import numpy as np import pycuda.autoinit import pycuda.gpuarray as gpuarray import sympy as sp from scipy.ndimage import convolve from pystencils import Assignment, Field, fields from pystencils.gpucuda import BlockIndexing, create_cuda_kernel, make_python_function from pystencils.gpucuda.indexing import LineIndexing from pystencils.simp import sympy_cse_on_assignment_list from pystencils.slicing import add_ghost_layers, make_slice, remove_ghost_layers def test_averaging_kernel(): size = (40, 55) src_arr = np.random.rand(*size) src_arr = add_ghost_layers(src_arr) dst_arr = np.zeros_like(src_arr) src_field = Field.create_from_numpy_array('src', src_arr) dst_field = Field.create_from_numpy_array('dst', dst_arr) update_rule = Assignment(dst_field[0, 0], (src_field[0, 1] + src_field[0, -1] + src_field[1, 0] + src_field[-1, 0]) / 4) ast = create_cuda_kernel(sympy_cse_on_assignment_list([update_rule])) kernel = make_python_function(ast) gpu_src_arr = gpuarray.to_gpu(src_arr) gpu_dst_arr = gpuarray.to_gpu(dst_arr) kernel(src=gpu_src_arr, dst=gpu_dst_arr) gpu_dst_arr.get(dst_arr) stencil = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]]) / 4.0 reference = convolve(remove_ghost_layers(src_arr), stencil, mode='constant', cval=0.0) reference = add_ghost_layers(reference) np.testing.assert_almost_equal(reference, dst_arr) def test_variable_sized_fields(): src_field = Field.create_generic('src', spatial_dimensions=2) dst_field = Field.create_generic('dst', spatial_dimensions=2) update_rule = Assignment(dst_field[0, 0], (src_field[0, 1] + src_field[0, -1] + src_field[1, 0] + src_field[-1, 0]) / 4) ast = create_cuda_kernel(sympy_cse_on_assignment_list([update_rule])) kernel = make_python_function(ast) size = (3, 3) src_arr = np.random.rand(*size) src_arr = add_ghost_layers(src_arr) dst_arr = np.zeros_like(src_arr) gpu_src_arr = gpuarray.to_gpu(src_arr) gpu_dst_arr = gpuarray.to_gpu(dst_arr) kernel(src=gpu_src_arr, dst=gpu_dst_arr) gpu_dst_arr.get(dst_arr) stencil = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]]) / 4.0 reference = convolve(remove_ghost_layers(src_arr), stencil, mode='constant', cval=0.0) reference = add_ghost_layers(reference) np.testing.assert_almost_equal(reference, dst_arr) def test_multiple_index_dimensions(): """Sums along the last axis of a numpy array""" src_size = (7, 6, 4) dst_size = src_size[:2] src_arr = np.asfortranarray(np.random.rand(*src_size)) dst_arr = np.zeros(dst_size) src_field = Field.create_from_numpy_array('src', src_arr, index_dimensions=1) dst_field = Field.create_from_numpy_array('dst', dst_arr, index_dimensions=0) offset = (-2, -1) update_rule = Assignment(dst_field[0, 0], sum([src_field[offset[0], offset[1]](i) for i in range(src_size[-1])])) ast = create_cuda_kernel([update_rule]) kernel = make_python_function(ast) gpu_src_arr = gpuarray.to_gpu(src_arr) gpu_dst_arr = gpuarray.to_gpu(dst_arr) kernel(src=gpu_src_arr, dst=gpu_dst_arr) gpu_dst_arr.get(dst_arr) reference = np.zeros_like(dst_arr) gl = np.max(np.abs(np.array(offset, dtype=int))) for x in range(gl, src_size[0]-gl): for y in range(gl, src_size[1]-gl): reference[x, y] = sum([src_arr[x+offset[0], y+offset[1], i] for i in range(src_size[2])]) np.testing.assert_almost_equal(reference, dst_arr) def test_ghost_layer(): size = (6, 5) src_arr = np.ones(size) dst_arr = np.zeros_like(src_arr) src_field = Field.create_from_numpy_array('src', src_arr, index_dimensions=0) dst_field = Field.create_from_numpy_array('dst', dst_arr, index_dimensions=0) update_rule = Assignment(dst_field[0, 0], src_field[0, 0]) ghost_layers = [(1, 2), (2, 1)] ast = create_cuda_kernel([update_rule], ghost_layers=ghost_layers, indexing_creator=LineIndexing) kernel = make_python_function(ast) gpu_src_arr = gpuarray.to_gpu(src_arr) gpu_dst_arr = gpuarray.to_gpu(dst_arr) kernel(src=gpu_src_arr, dst=gpu_dst_arr) gpu_dst_arr.get(dst_arr) reference = np.zeros_like(src_arr) reference[ghost_layers[0][0]:-ghost_layers[0][1], ghost_layers[1][0]:-ghost_layers[1][1]] = 1 np.testing.assert_equal(reference, dst_arr) def test_setting_value(): arr_cpu = np.arange(25, dtype=np.float64).reshape(5, 5) arr_gpu = gpuarray.to_gpu(arr_cpu) iteration_slice = make_slice[:, :] f = Field.create_generic("f", 2) update_rule = [Assignment(f(0), sp.Symbol("value"))] ast = create_cuda_kernel(update_rule, iteration_slice=iteration_slice, indexing_creator=LineIndexing) kernel = make_python_function(ast) kernel(f=arr_gpu, value=np.float64(42.0)) np.testing.assert_equal(arr_gpu.get(), np.ones((5, 5)) * 42.0) def test_periodicity(): from pystencils.gpucuda.periodicity import get_periodic_boundary_functor as periodic_gpu from pystencils.slicing import get_periodic_boundary_functor as periodic_cpu arr_cpu = np.arange(50, dtype=np.float64).reshape(5, 5, 2) arr_gpu = gpuarray.to_gpu(arr_cpu) periodicity_stencil = [(1, 0), (-1, 0), (1, 1)] periodic_gpu_kernel = periodic_gpu(periodicity_stencil, (5, 5), 1, 2) periodic_cpu_kernel = periodic_cpu(periodicity_stencil) cpu_result = np.copy(arr_cpu) periodic_cpu_kernel(cpu_result) gpu_result = np.copy(arr_cpu) periodic_gpu_kernel(pdfs=arr_gpu) arr_gpu.get(gpu_result) np.testing.assert_equal(cpu_result, gpu_result) def test_block_indexing(): f = fields("f: [3D]") bi = BlockIndexing(f, make_slice[:, :, :], block_size=(16, 8, 2), permute_block_size_dependent_on_layout=False) assert bi.call_parameters((3, 2, 32))['block'] == (3, 2, 32) assert bi.call_parameters((32, 2, 32))['block'] == (16, 2, 8) bi = BlockIndexing(f, make_slice[:, :, :], block_size=(32, 1, 1), permute_block_size_dependent_on_layout=False) assert bi.call_parameters((1, 16, 16))['block'] == (1, 16, 2)