import pytest import sympy as sp import numpy as np import pystencils as ps @pytest.mark.parametrize('dtype', ["float64", "float32"]) @pytest.mark.parametrize('func', [sp.Pow, sp.atan2]) @pytest.mark.parametrize('target', [ps.Target.CPU, ps.Target.GPU]) def test_two_arguments(dtype, func, target): if target == ps.Target.GPU: pytest.importorskip("pycuda") dh = ps.create_data_handling(domain_size=(10, 10), periodicity=True, default_target=target) x = dh.add_array('x', values_per_cell=1, dtype=dtype) dh.fill("x", 0.0, ghost_layers=True) y = dh.add_array('y', values_per_cell=1, dtype=dtype) dh.fill("y", 1.0, ghost_layers=True) z = dh.add_array('z', values_per_cell=1, dtype=dtype) dh.fill("z", 2.0, ghost_layers=True) config = ps.CreateKernelConfig(target=target) # test sp.Max with one argument up = ps.Assignment(x.center, func(y.center, z.center)) ast = ps.create_kernel(up, config=config) code = ps.get_code_str(ast) if dtype == 'float32': assert func.__name__.lower() in code kernel = ast.compile() dh.all_to_gpu() dh.run_kernel(kernel) dh.all_to_cpu() np.testing.assert_allclose(dh.gather_array("x")[0, 0], float(func(1.0, 2.0).evalf())) @pytest.mark.parametrize('dtype', ["float64", "float32"]) @pytest.mark.parametrize('func', [sp.sin, sp.cos, sp.sinh, sp.cosh, sp.atan]) @pytest.mark.parametrize('target', [ps.Target.CPU, ps.Target.GPU]) def test_single_arguments(dtype, func, target): if target == ps.Target.GPU: pytest.importorskip("pycuda") dh = ps.create_data_handling(domain_size=(10, 10), periodicity=True, default_target=target) x = dh.add_array('x', values_per_cell=1, dtype=dtype) dh.fill("x", 0.0, ghost_layers=True) y = dh.add_array('y', values_per_cell=1, dtype=dtype) dh.fill("y", 1.0, ghost_layers=True) config = ps.CreateKernelConfig(target=target) # test sp.Max with one argument up = ps.Assignment(x.center, func(y.center)) ast = ps.create_kernel(up, config=config) code = ps.get_code_str(ast) if dtype == 'float32': assert func.__name__.lower() in code kernel = ast.compile() dh.all_to_gpu() dh.run_kernel(kernel) dh.all_to_cpu() np.testing.assert_allclose(dh.gather_array("x")[0, 0], float(func(1.0).evalf()), rtol=10**-3 if dtype == 'float32' else 10**-5)