import pytest import sympy as sp import pystencils as ps from pystencils.astnodes import LoopOverCoordinate, Conditional, Block, SympyAssignment @pytest.mark.parametrize('target', [ps.Target.CPU, ps.Target.GPU]) @pytest.mark.parametrize('iteration_slice', [False, True]) def test_mod(target, iteration_slice): if target == ps.Target.GPU: pytest.importorskip("pycuda") dh = ps.create_data_handling(domain_size=(5, 5), periodicity=True, default_target=ps.Target.CPU) loop_ctrs = [LoopOverCoordinate.get_loop_counter_symbol(i) for i in range(dh.dim)] cond = [sp.Eq(sp.Mod(loop_ctrs[i], 2), 1) for i in range(dh.dim)] field = dh.add_array("a", values_per_cell=1) eq_list = [SympyAssignment(field.center, 1.0)] if iteration_slice: iteration_slice = ps.make_slice[1:-1:2, 1:-1:2] config = ps.CreateKernelConfig(target=dh.default_target, iteration_slice=iteration_slice) assign = eq_list else: assign = [Conditional(sp.And(*cond), Block(eq_list))] config = ps.CreateKernelConfig(target=dh.default_target) kernel = ps.create_kernel(assign, config=config).compile() dh.fill(field.name, 0, ghost_layers=True) if config.target == ps.enums.Target.GPU: dh.to_gpu(field.name) dh.run_kernel(kernel) if config.target == ps.enums.Target.GPU: dh.to_cpu(field.name) result = dh.gather_array(field.name, ghost_layers=True) for x in range(result.shape[0]): for y in range(result.shape[1]): if x % 2 == 1 and y % 2 == 1: assert result[x, y] == 1.0 else: assert result[x, y] == 0.0