import pystencils as ps import sympy as sp import numpy as np from pystencils.astnodes import Conditional, Block from pystencils.cpu.vectorization import vec_all, vec_any def test_vec_any(): data_arr = np.zeros((15, 15)) data_arr[3:9, 2:7] = 1.0 data = ps.fields("data: double[2D]", data=data_arr) c = [ ps.Assignment(sp.Symbol("t1"), vec_any(data.center() > 0.0)), Conditional(vec_any(data.center() > 0.0), Block([ ps.Assignment(data.center(), 2.0) ])) ] ast = ps.create_kernel(c, target='cpu', cpu_vectorize_info={'instruction_set': 'avx'}) kernel = ast.compile() kernel(data=data_arr) np.testing.assert_equal(data_arr[3:9, 0:8], 2.0) def test_vec_all(): data_arr = np.zeros((15, 15)) data_arr[3:9, 2:7] = 1.0 data = ps.fields("data: double[2D]", data=data_arr) c = [ Conditional(vec_all(data.center() > 0.0), Block([ ps.Assignment(data.center(), 2.0) ])) ] ast = ps.create_kernel(c, target='cpu', cpu_vectorize_info={'instruction_set': 'avx'}) kernel = ast.compile() before = data_arr.copy() kernel(data=data_arr) np.testing.assert_equal(data_arr, before) def test_boolean_before_loop(): t1, t2 = sp.symbols('t1, t2') f_arr = np.ones((10, 10)) g_arr = np.zeros_like(f_arr) f, g = ps.fields("f, g : double[2D]", f=f_arr, g=g_arr) a = [ ps.Assignment(t1, t2 > 0), ps.Assignment(g[0, 0], sp.Piecewise((f[0, 0], t1), (42, True))) ] ast = ps.create_kernel(a, cpu_vectorize_info={'instruction_set': 'avx'}) kernel = ast.compile() kernel(f=f_arr, g=g_arr, t2=1.0) print(g) np.testing.assert_array_equal(g_arr, 1.0) kernel(f=f_arr, g=g_arr, t2=-1.0) np.testing.assert_array_equal(g_arr, 42.0)