import numpy as np from pystencils import Assignment, Field from pystencils.llvm import create_kernel, make_python_function from pystencils.llvm.llvmjit import generate_and_jit def test_jacobi_fixed_field_size(): size = (30, 20) src_field_llvm = np.random.rand(*size) src_field_py = np.copy(src_field_llvm) dst_field_llvm = np.zeros(size) dst_field_py = np.zeros(size) f = Field.create_from_numpy_array("f", src_field_llvm) d = Field.create_from_numpy_array("d", dst_field_llvm) jacobi = Assignment(d[0, 0], (f[1, 0] + f[-1, 0] + f[0, 1] + f[0, -1]) / 4) ast = create_kernel([jacobi]) for x in range(1, size[0] - 1): for y in range(1, size[1] - 1): dst_field_py[x, y] = 0.25 * (src_field_py[x - 1, y] + src_field_py[x + 1, y] + src_field_py[x, y - 1] + src_field_py[x, y + 1]) jit = generate_and_jit(ast) jit('kernel', dst_field_llvm, src_field_llvm) error = np.sum(np.abs(dst_field_py - dst_field_llvm)) np.testing.assert_almost_equal(error, 0.0) def test_jacobi_variable_field_size(): size = (3, 3, 3) f = Field.create_generic("f", 3) d = Field.create_generic("d", 3) jacobi = Assignment(d[0, 0, 0], (f[1, 0, 0] + f[-1, 0, 0] + f[0, 1, 0] + f[0, -1, 0]) / 4) ast = create_kernel([jacobi]) src_field_llvm = np.random.rand(*size) src_field_py = np.copy(src_field_llvm) dst_field_llvm = np.zeros(size) dst_field_py = np.zeros(size) for x in range(1, size[0] - 1): for y in range(1, size[1] - 1): for z in range(1, size[2] - 1): dst_field_py[x, y, z] = 0.25 * (src_field_py[x - 1, y, z] + src_field_py[x + 1, y, z] + src_field_py[x, y - 1, z] + src_field_py[x, y + 1, z]) kernel = make_python_function(ast, {'f': src_field_llvm, 'd': dst_field_llvm}) kernel() error = np.sum(np.abs(dst_field_py - dst_field_llvm)) np.testing.assert_almost_equal(error, 0.0)