import sympy as sp import pystencils as ps def test_ek(): # parameters L = (40, 40) D = sp.Symbol("D") z = sp.Symbol("z") # data structures dh = ps.create_data_handling(L, periodicity=True, default_target='cpu') c = dh.add_array('c', values_per_cell=1) v = dh.add_array('v', values_per_cell=dh.dim) j = dh.add_array('j', values_per_cell=dh.dim * 2, field_type=ps.FieldType.STAGGERED_FLUX) Phi = dh.add_array('Φ', values_per_cell=1) # perform automatic discretization def Gradient(f): return sp.Matrix([ps.fd.diff(f, i) for i in range(dh.dim)]) flux_eq = -D * Gradient(c) + D * z * c.center * Gradient(Phi) disc = ps.fd.FVM1stOrder(c, flux_eq) flux_assignments = disc.discrete_flux(j) advection_assignments = ps.fd.VOF(j, v, c) continuity_assignments = disc.discrete_continuity(j) # manual discretization x_staggered = - c[-1, 0] + c[0, 0] + z * (c[-1, 0] + c[0, 0]) / 2 * (Phi[-1, 0] - Phi[0, 0]) y_staggered = - c[0, -1] + c[0, 0] + z * (c[0, -1] + c[0, 0]) / 2 * (Phi[0, -1] - Phi[0, 0]) xy_staggered = - c[-1, -1] + c[0, 0] + z * (c[-1, -1] + c[0, 0]) / 2 * (Phi[-1, -1] - Phi[0, 0]) xY_staggered = - c[-1, 1] + c[0, 0] + z * (c[-1, 1] + c[0, 0]) / 2 * (Phi[-1, 1] - Phi[0, 0]) jj = j.staggered_access divergence = -1 / (1 + sp.sqrt(2) if j.index_shape[0] == 4 else 1) * \ sum([jj(d) / sp.Matrix(ps.stencil.direction_string_to_offset(d)).norm() for d in j.staggered_stencil + [ps.stencil.inverse_direction_string(d) for d in j.staggered_stencil]]) update = [ps.Assignment(c.center, c.center + divergence)] flux = [ps.Assignment(j.staggered_access("W"), D * x_staggered), ps.Assignment(j.staggered_access("S"), D * y_staggered)] if j.index_shape[0] == 4: flux += [ps.Assignment(j.staggered_access("SW"), D * xy_staggered), ps.Assignment(j.staggered_access("NW"), D * xY_staggered)] # compare for a, b in zip(flux, flux_assignments): assert a.lhs == b.lhs assert sp.simplify(a.rhs - b.rhs) == 0 for a, b in zip(update, continuity_assignments): assert a.lhs == b.lhs assert a.rhs == b.rhs # TODO: test advection and source