import numpy as np import sympy as sp from pystencils.assignment import Assignment from pystencils import Field, TypedSymbol, createIndexedKernel from pystencils.backends.cbackend import CustomCppCode from pystencils.boundaries.createindexlist import numpyDataTypeForBoundaryObject, createBoundaryIndexArray from pystencils.cache import memorycache from pystencils.data_types import create_type class FlagInterface: FLAG_DTYPE = np.uint32 def __init__(self, dataHandling, flagFieldName): self.flagFieldName = flagFieldName self.domainFlag = self.FLAG_DTYPE(1 << 0) self._nextFreeFlag = 1 self.dataHandling = dataHandling # Add flag field to data handling if it does not yet exist if dataHandling.hasData(self.flagFieldName): raise ValueError("There is already a boundary handling registered at the data handling." "If you want to add multiple handlings, choose a different name.") dataHandling.addArray(self.flagFieldName, dtype=self.FLAG_DTYPE, cpu=True, gpu=False) ffGhostLayers = dataHandling.ghostLayersOfField(self.flagFieldName) for b in dataHandling.iterate(ghostLayers=ffGhostLayers): b[self.flagFieldName].fill(self.domainFlag) def allocateNextFlag(self): result = self.FLAG_DTYPE(1 << self._nextFreeFlag) self._nextFreeFlag += 1 return result class BoundaryHandling: def __init__(self, dataHandling, fieldName, stencil, name="boundaryHandling", flagInterface=None, target='cpu', openMP=True): assert dataHandling.hasData(fieldName) self._dataHandling = dataHandling self._fieldName = fieldName self._indexArrayName = name + "IndexArrays" self._target = target self._openMP = openMP self._boundaryObjectToBoundaryInfo = {} self.stencil = stencil self._dirty = True self.flagInterface = flagInterface if flagInterface is not None else FlagInterface(dataHandling, name + "Flags") gpu = self._target == 'gpu' dataHandling.addCustomClass(self._indexArrayName, self.IndexFieldBlockData, cpu=True, gpu=gpu) @property def dataHandling(self): return self._dataHandling def getFlag(self, boundaryObj): return self._boundaryObjectToBoundaryInfo[boundaryObj].flag @property def shape(self): return self._dataHandling.shape @property def dim(self): return self._dataHandling.dim @property def boundaryObjects(self): return tuple(self._boundaryObjectToName.keys()) @property def flagArrayName(self): return self.flagInterface.flagFieldName def getBoundaryNameToFlagDict(self): result = {bObj.name: bInfo.flag for bObj, bInfo in self._boundaryObjectToBoundaryInfo.items()} result['domain'] = self.flagInterface.domainFlag return result def getMask(self, sliceObj, boundaryObj, inverse=False): if isinstance(boundaryObj, str) and boundaryObj.lower() == 'domain': flag = self.flagInterface.domainFlag else: flag = self._boundaryObjectToBoundaryInfo[boundaryObj].flag arr = self.dataHandling.gatherArray(self.flagArrayName, sliceObj) if arr is None: return None else: result = np.bitwise_and(arr, flag) if inverse: result = np.logical_not(result) return result def setBoundary(self, boundaryObject, sliceObj=None, maskCallback=None, ghostLayers=True, innerGhostLayers=True, replace=True): """ Sets boundary using either a rectangular slice, a boolean mask or a combination of both :param boundaryObject: instance of a boundary object that should be set :param sliceObj: a slice object (can be created with makeSlice[]) that selects a part of the domain where the boundary should be set. If none, the complete domain is selected which makes only sense if a maskCallback is passed. The slice can have ':' placeholders, which are interpreted depending on the 'includeGhostLayers' parameter i.e. if it is True, the slice extends into the ghost layers :param maskCallback: callback function getting x,y (z) parameters of the cell midpoints and returning a boolean mask with True entries where boundary cells should be set. The x, y, z arrays have 2D/3D shape such that they can be used directly to create the boolean return array. i.e return x < 10 sets boundaries in cells with midpoint x coordinate smaller than 10. :param ghostLayers see DataHandling.iterate() """ if isinstance(boundaryObject, str) and boundaryObject.lower() == 'domain': flag = self.flagInterface.domainFlag else: flag = self._addBoundary(boundaryObject) for b in self._dataHandling.iterate(sliceObj, ghostLayers=ghostLayers, innerGhostLayers=innerGhostLayers): flagArr = b[self.flagInterface.flagFieldName] if maskCallback is not None: mask = maskCallback(*b.midpointArrays) if replace: flagArr[mask] = flag else: np.bitwise_or(flagArr, flag, where=mask, out=flagArr) np.bitwise_and(flagArr, ~self.flagInterface.domainFlag, where=mask, out=flagArr) else: if replace: flagArr.fill(flag) else: np.bitwise_or(flagArr, flag, out=flagArr) np.bitwise_and(flagArr, ~self.flagInterface.domainFlag, out=flagArr) self._dirty = True return flag def setBoundaryWhereFlagIsSet(self, boundaryObject, flag): self._addBoundary(boundaryObject, flag) self._dirty = True return flag def prepare(self): if not self._dirty: return self._createIndexFields() self._dirty = False def triggerReinitializationOfBoundaryData(self, **kwargs): if self._dirty: self.prepare() else: ffGhostLayers = self._dataHandling.ghostLayersOfField(self.flagInterface.flagFieldName) for b in self._dataHandling.iterate(ghostLayers=ffGhostLayers): for bObj, setter in b[self._indexArrayName].boundaryObjectToDataSetter.items(): self._boundaryDataInitialization(bObj, setter, **kwargs) def __call__(self, **kwargs): if self._dirty: self.prepare() for b in self._dataHandling.iterate(gpu=self._target == 'gpu'): for bObj, idxArr in b[self._indexArrayName].boundaryObjectToIndexList.items(): kwargs[self._fieldName] = b[self._fieldName] kwargs['indexField'] = idxArr dataUsedInKernel = (p.fieldName for p in self._boundaryObjectToBoundaryInfo[bObj].kernel.parameters if p.isFieldPtrArgument and p.fieldName not in kwargs) kwargs.update({name: b[name] for name in dataUsedInKernel}) self._boundaryObjectToBoundaryInfo[bObj].kernel(**kwargs) def geometryToVTK(self, fileName='geometry', boundaries='all', ghostLayers=False): """ Writes a VTK field where each cell with the given boundary is marked with 1, other cells are 0 This can be used to display the simulation geometry in Paraview :param fileName: vtk filename :param boundaries: boundary object, or special string 'domain' for domain cells or special string 'all' for all boundary conditions. can also be a sequence, to write multiple boundaries to VTK file :param ghostLayers: number of ghost layers to write, or True for all, False for none """ if boundaries == 'all': boundaries = list(self._boundaryObjectToBoundaryInfo.keys()) + ['domain'] elif not hasattr(boundaries, "__len__"): boundaries = [boundaries] masksToName = {} for b in boundaries: if b == 'domain': masksToName[self.flagInterface.domainFlag] = 'domain' else: masksToName[self._boundaryObjectToBoundaryInfo[b].flag] = b.name writer = self.dataHandling.vtkWriterFlags(fileName, self.flagInterface.flagFieldName, masksToName, ghostLayers=ghostLayers) writer(1) # ------------------------------ Implementation Details ------------------------------------------------------------ def _addBoundary(self, boundaryObject, flag=None): if boundaryObject not in self._boundaryObjectToBoundaryInfo: symbolicIndexField = Field.createGeneric('indexField', spatialDimensions=1, dtype=numpyDataTypeForBoundaryObject(boundaryObject, self.dim)) ast = self._createBoundaryKernel(self._dataHandling.fields[self._fieldName], symbolicIndexField, boundaryObject) if flag is None: flag = self.flagInterface.allocateNextFlag() boundaryInfo = self.BoundaryInfo(boundaryObject, flag=flag, kernel=ast.compile()) self._boundaryObjectToBoundaryInfo[boundaryObject] = boundaryInfo return self._boundaryObjectToBoundaryInfo[boundaryObject].flag def _createBoundaryKernel(self, symbolicField, symbolicIndexField, boundaryObject): return createBoundaryKernel(symbolicField, symbolicIndexField, self.stencil, boundaryObject, target=self._target, openMP=self._openMP) def _createIndexFields(self): dh = self._dataHandling ffGhostLayers = dh.ghostLayersOfField(self.flagInterface.flagFieldName) for b in dh.iterate(ghostLayers=ffGhostLayers): flagArr = b[self.flagInterface.flagFieldName] pdfArr = b[self._fieldName] indexArrayBD = b[self._indexArrayName] indexArrayBD.clear() for bInfo in self._boundaryObjectToBoundaryInfo.values(): idxArr = createBoundaryIndexArray(flagArr, self.stencil, bInfo.flag, self.flagInterface.domainFlag, bInfo.boundaryObject, ffGhostLayers) if idxArr.size == 0: continue boundaryDataSetter = BoundaryDataSetter(idxArr, b.offset, self.stencil, ffGhostLayers, pdfArr) indexArrayBD.boundaryObjectToIndexList[bInfo.boundaryObject] = idxArr indexArrayBD.boundaryObjectToDataSetter[bInfo.boundaryObject] = boundaryDataSetter self._boundaryDataInitialization(bInfo.boundaryObject, boundaryDataSetter) def _boundaryDataInitialization(self, boundaryObject, boundaryDataSetter, **kwargs): if boundaryObject.additionalDataInitCallback: boundaryObject.additionalDataInitCallback(boundaryDataSetter, **kwargs) if self._target == 'gpu': self._dataHandling.toGpu(self._indexArrayName) class BoundaryInfo(object): def __init__(self, boundaryObject, flag, kernel): self.boundaryObject = boundaryObject self.flag = flag self.kernel = kernel class IndexFieldBlockData: def __init__(self, *args, **kwargs): self.boundaryObjectToIndexList = {} self.boundaryObjectToDataSetter = {} def clear(self): self.boundaryObjectToIndexList.clear() self.boundaryObjectToDataSetter.clear() @staticmethod def toCpu(gpuVersion, cpuVersion): gpuVersion = gpuVersion.boundaryObjectToIndexList cpuVersion = cpuVersion.boundaryObjectToIndexList for obj, cpuArr in cpuVersion.values(): gpuVersion[obj].get(cpuArr) @staticmethod def toGpu(gpuVersion, cpuVersion): from pycuda import gpuarray gpuVersion = gpuVersion.boundaryObjectToIndexList cpuVersion = cpuVersion.boundaryObjectToIndexList for obj, cpuArr in cpuVersion.items(): if obj not in gpuVersion: gpuVersion[obj] = gpuarray.to_gpu(cpuArr) else: gpuVersion[obj].set(cpuArr) class BoundaryDataSetter: def __init__(self, indexArray, offset, stencil, ghostLayers, pdfArray): self.indexArray = indexArray self.offset = offset self.stencil = np.array(stencil) self.pdfArray = pdfArray.view() self.pdfArray.flags.writeable = False arrFieldNames = indexArray.dtype.names self.dim = 3 if 'z' in arrFieldNames else 2 assert 'x' in arrFieldNames and 'y' in arrFieldNames and 'dir' in arrFieldNames, str(arrFieldNames) self.boundaryDataNames = set(self.indexArray.dtype.names) - set(['x', 'y', 'z', 'dir']) self.coordMap = {0: 'x', 1: 'y', 2: 'z'} self.ghostLayers = ghostLayers def nonBoundaryCellPositions(self, coord): assert coord < self.dim return self.indexArray[self.coordMap[coord]] + self.offset[coord] - self.ghostLayers + 0.5 @memorycache() def linkOffsets(self): return self.stencil[self.indexArray['dir']] @memorycache() def linkPositions(self, coord): return self.nonBoundaryCellPositions(coord) + 0.5 * self.linkOffsets()[:, coord] @memorycache() def boundaryCellPositions(self, coord): return self.nonBoundaryCellPositions(coord) + self.linkOffsets()[:, coord] def __setitem__(self, key, value): if key not in self.boundaryDataNames: raise KeyError("Invalid boundary data name %s. Allowed are %s" % (key, self.boundaryDataNames)) self.indexArray[key] = value def __getitem__(self, item): if item not in self.boundaryDataNames: raise KeyError("Invalid boundary data name %s. Allowed are %s" % (item, self.boundaryDataNames)) return self.indexArray[item] class BoundaryOffsetInfo(CustomCppCode): # --------------------------- Functions to be used by boundaries -------------------------- @staticmethod def offsetFromDir(dirIdx, dim): return tuple([sp.IndexedBase(symbol, shape=(1,))[dirIdx] for symbol in BoundaryOffsetInfo._offsetSymbols(dim)]) @staticmethod def invDir(dirIdx): return sp.IndexedBase(BoundaryOffsetInfo.INV_DIR_SYMBOL, shape=(1,))[dirIdx] # ---------------------------------- Internal --------------------------------------------- def __init__(self, stencil): dim = len(stencil[0]) offsetSym = BoundaryOffsetInfo._offsetSymbols(dim) code = "\n" for i in range(dim): offsetStr = ", ".join([str(d[i]) for d in stencil]) code += "const int64_t %s [] = { %s };\n" % (offsetSym[i].name, offsetStr) invDirs = [] for direction in stencil: inverseDir = tuple([-i for i in direction]) invDirs.append(str(stencil.index(inverseDir))) code += "const int %s [] = { %s };\n" % (self.INV_DIR_SYMBOL.name, ", ".join(invDirs)) offsetSymbols = BoundaryOffsetInfo._offsetSymbols(dim) super(BoundaryOffsetInfo, self).__init__(code, symbols_read=set(), symbols_defined=set(offsetSymbols + [self.INV_DIR_SYMBOL])) @staticmethod def _offsetSymbols(dim): return [TypedSymbol("c_%d" % (d,), create_type(np.int64)) for d in range(dim)] INV_DIR_SYMBOL = TypedSymbol("invDir", "int") def createBoundaryKernel(field, indexField, stencil, boundaryFunctor, target='cpu', openMP=True): elements = [BoundaryOffsetInfo(stencil)] indexArrDtype = indexField.dtype.numpy_dtype dirSymbol = TypedSymbol("dir", indexArrDtype.fields['dir'][0]) elements += [Assignment(dirSymbol, indexField[0]('dir'))] elements += boundaryFunctor(field, directionSymbol=dirSymbol, indexField=indexField) return createIndexedKernel(elements, [indexField], target=target, cpuOpenMP=openMP)