from pystencils.assignment_collection import AssignmentCollection from pystencils.gpucuda.indexing import indexingCreatorFromParams def createKernel(equations, target='cpu', dataType="double", iterationSlice=None, ghostLayers=None, cpuOpenMP=False, cpuVectorizeInfo=None, gpuIndexing='block', gpuIndexingParams={}): """ Creates abstract syntax tree (AST) of kernel, using a list of update equations. :param equations: either be a plain list of equations or a AssignmentCollection object :param target: 'cpu', 'llvm' or 'gpu' :param dataType: data type used for all untyped symbols (i.e. non-fields), can also be a dict from symbol name to type :param iterationSlice: rectangular subset to iterate over, if not specified the complete non-ghost layer part of the field is iterated over :param ghostLayers: if left to default, the number of necessary ghost layers is determined automatically a single integer specifies the ghost layer count at all borders, can also be a sequence of pairs [(xLowerGl, xUpperGl), .... ] CPU specific Parameters: :param cpuOpenMP: True or number of threads for OpenMP parallelization, False for no OpenMP :param cpuVectorizeInfo: pair of instruction set name ('sse, 'avx', 'avx512') and data type ('float', 'double') GPU specific Parameters :param gpuIndexing: either 'block' or 'line' , or custom indexing class (see gpucuda/indexing.py) :param gpuIndexingParams: dict with indexing parameters (constructor parameters of indexing class) e.g. for 'block' one can specify {'blockSize': (20, 20, 10) } :return: abstract syntax tree object, that can either be printed as source code or can be compiled with through its compile() function """ # ---- Normalizing parameters splitGroups = () if isinstance(equations, AssignmentCollection): if 'splitGroups' in equations.simplification_hints: splitGroups = equations.simplification_hints['splitGroups'] equations = equations.all_assignments # ---- Creating ast if target == 'cpu': from pystencils.cpu import createKernel from pystencils.cpu import addOpenMP ast = createKernel(equations, typeForSymbol=dataType, splitGroups=splitGroups, iterationSlice=iterationSlice, ghostLayers=ghostLayers) if cpuOpenMP: addOpenMP(ast, numThreads=cpuOpenMP) if cpuVectorizeInfo: import pystencils.backends.simd_instruction_sets as vec from pystencils.vectorization import vectorize vecParams = cpuVectorizeInfo vec.selectedInstructionSet = vec.x86_vector_instruction_set(instruction_set=vecParams[0], data_type=vecParams[1]) vectorize(ast) return ast elif target == 'llvm': from pystencils.llvm import createKernel ast = createKernel(equations, typeForSymbol=dataType, splitGroups=splitGroups, iterationSlice=iterationSlice, ghostLayers=ghostLayers) return ast elif target == 'gpu': from pystencils.gpucuda import createCUDAKernel ast = createCUDAKernel(equations, typeForSymbol=dataType, indexingCreator=indexingCreatorFromParams(gpuIndexing, gpuIndexingParams), iterationSlice=iterationSlice, ghostLayers=ghostLayers) return ast else: raise ValueError("Unknown target %s. Has to be one of 'cpu', 'gpu' or 'llvm' " % (target,)) def createIndexedKernel(equations, indexFields, target='cpu', dataType="double", coordinateNames=('x', 'y', 'z'), cpuOpenMP=True, gpuIndexing='block', gpuIndexingParams={}): """ Similar to :func:`createKernel`, but here not all cells of a field are updated but only cells with coordinates which are stored in an index field. This traversal method can e.g. be used for boundary handling. The coordinates are stored in a separated indexField, which is a one dimensional array with struct data type. This struct has to contain fields named 'x', 'y' and for 3D fields ('z'). These names are configurable with the 'coordinateNames' parameter. The struct can have also other fields that can be read and written in the kernel, for example boundary parameters. indexFields: list of index fields, i.e. 1D fields with struct data type coordinateNames: name of the coordinate fields in the struct data type """ if isinstance(equations, AssignmentCollection): equations = equations.all_assignments if target == 'cpu': from pystencils.cpu import createIndexedKernel from pystencils.cpu import addOpenMP ast = createIndexedKernel(equations, indexFields=indexFields, typeForSymbol=dataType, coordinateNames=coordinateNames) if cpuOpenMP: addOpenMP(ast, numThreads=cpuOpenMP) return ast elif target == 'llvm': raise NotImplementedError("Indexed kernels are not yet supported in LLVM backend") elif target == 'gpu': from pystencils.gpucuda import createdIndexedCUDAKernel ast = createdIndexedCUDAKernel(equations, indexFields, typeForSymbol=dataType, coordinateNames=coordinateNames, indexingCreator=indexingCreatorFromParams(gpuIndexing, gpuIndexingParams)) return ast else: raise ValueError("Unknown target %s. Has to be either 'cpu' or 'gpu'" % (target,))