import pytest import numpy as np import sympy as sp import pystencils as ps from pystencils.backends.simd_instruction_sets import (get_cacheline_size, get_supported_instruction_sets, get_vector_instruction_set) from pystencils.data_types import cast_func, VectorType supported_instruction_sets = get_supported_instruction_sets() if get_supported_instruction_sets() else [] @pytest.mark.parametrize('instruction_set', supported_instruction_sets) def test_vectorisation_varying_arch(instruction_set): shape = (9, 9, 3) arr = np.ones(shape, order='f') @ps.kernel def update_rule(s): f = ps.fields("f(3) : [2D]", f=arr) s.tmp0 @= f(0) s.tmp1 @= f(1) s.tmp2 @= f(2) f0, f1, f2 = f(0), f(1), f(2) f0 @= 2 * s.tmp0 f1 @= 2 * s.tmp0 f2 @= 2 * s.tmp0 ast = ps.create_kernel(update_rule, cpu_vectorize_info={'instruction_set': instruction_set}) kernel = ast.compile() kernel(f=arr) np.testing.assert_equal(arr, 2) @pytest.mark.parametrize('dtype', ('float', 'double')) @pytest.mark.parametrize('instruction_set', supported_instruction_sets) def test_vectorized_abs(instruction_set, dtype): """Some instructions sets have abs, some don't. Furthermore, the special treatment of unary minus makes this data type-sensitive too. """ arr = np.ones((2 ** 2 + 2, 2 ** 3 + 2), dtype=np.float64 if dtype == 'double' else np.float32) arr[-3:, :] = -1 f, g = ps.fields(f=arr, g=arr) update_rule = [ps.Assignment(g.center(), sp.Abs(f.center()))] ast = ps.create_kernel(update_rule, cpu_vectorize_info={'instruction_set': instruction_set}) func = ast.compile() dst = np.zeros_like(arr) func(g=dst, f=arr) np.testing.assert_equal(np.sum(dst[1:-1, 1:-1]), 2 ** 2 * 2 ** 3) @pytest.mark.parametrize('dtype', ('float', 'double')) @pytest.mark.parametrize('instruction_set', supported_instruction_sets) def test_strided(instruction_set, dtype): f, g = ps.fields(f"f, g : float{64 if dtype == 'double' else 32}[2D]") update_rule = [ps.Assignment(g[0, 0], f[0, 0] + f[-1, 0] + f[1, 0] + f[0, 1] + f[0, -1] + 42.0)] if 'storeS' not in get_vector_instruction_set(dtype, instruction_set) and not instruction_set in ['avx512', 'rvv'] and not instruction_set.startswith('sve'): with pytest.warns(UserWarning) as warn: ast = ps.create_kernel(update_rule, cpu_vectorize_info={'instruction_set': instruction_set}) assert 'Could not vectorize loop' in warn[0].message.args[0] else: with pytest.warns(None) as warn: ast = ps.create_kernel(update_rule, cpu_vectorize_info={'instruction_set': instruction_set}) assert len(warn) == 0 func = ast.compile() ref_func = ps.create_kernel(update_rule).compile() arr = np.random.random((23 + 2, 17 + 2)).astype(np.float64 if dtype == 'double' else np.float32) dst = np.zeros_like(arr, dtype=np.float64 if dtype == 'double' else np.float32) ref = np.zeros_like(arr, dtype=np.float64 if dtype == 'double' else np.float32) func(g=dst, f=arr) ref_func(g=ref, f=arr) np.testing.assert_almost_equal(dst, ref, 13 if dtype == 'double' else 5) @pytest.mark.parametrize('dtype', ('float', 'double')) @pytest.mark.parametrize('instruction_set', supported_instruction_sets) @pytest.mark.parametrize('gl_field, gl_kernel', [(1, 0), (0, 1), (1, 1)]) def test_alignment_and_correct_ghost_layers(gl_field, gl_kernel, instruction_set, dtype): dtype = np.float64 if dtype == 'double' else np.float32 domain_size = (128, 128) dh = ps.create_data_handling(domain_size, periodicity=(True, True), default_target='cpu') src = dh.add_array("src", values_per_cell=1, dtype=dtype, ghost_layers=gl_field, alignment=True) dh.fill(src.name, 1.0, ghost_layers=True) dst = dh.add_array("dst", values_per_cell=1, dtype=dtype, ghost_layers=gl_field, alignment=True) dh.fill(dst.name, 1.0, ghost_layers=True) update_rule = ps.Assignment(dst[0, 0], src[0, 0]) opt = {'instruction_set': instruction_set, 'assume_aligned': True, 'nontemporal': True, 'assume_inner_stride_one': True} ast = ps.create_kernel(update_rule, target=dh.default_target, cpu_vectorize_info=opt, ghost_layers=gl_kernel) kernel = ast.compile() if gl_kernel != gl_field: with pytest.raises(ValueError): dh.run_kernel(kernel) else: dh.run_kernel(kernel) @pytest.mark.parametrize('instruction_set', supported_instruction_sets) def test_cacheline_size(instruction_set): cacheline_size = get_cacheline_size(instruction_set) if cacheline_size is None and instruction_set in ['sse', 'avx', 'avx512', 'rvv']: pytest.skip() instruction_set = get_vector_instruction_set('double', instruction_set) vector_size = instruction_set['bytes'] assert cacheline_size > 8 and cacheline_size < 0x100000, "Cache line size is implausible" if type(vector_size) is int: assert cacheline_size % vector_size == 0, "Cache line size should be multiple of vector size" assert cacheline_size & (cacheline_size - 1) == 0, "Cache line size is not a power of 2" # test_vectorization is not parametrized because it is supposed to run without pytest, so we parametrize it here from pystencils_tests import test_vectorization @pytest.mark.parametrize('instruction_set', sorted(set(supported_instruction_sets) - set([test_vectorization.instruction_set]))) @pytest.mark.parametrize('function', [f for f in test_vectorization.__dict__ if f.startswith('test_') and f != 'test_hardware_query']) def test_vectorization_other(instruction_set, function): test_vectorization.__dict__[function](instruction_set)