import sympy as sp import pystencils as ps import numpy as np import pytest from itertools import product from pystencils.rng import random_symbol from pystencils.astnodes import SympyAssignment from pystencils.node_collection import NodeCollection def advection_diffusion(dim: int): # parameters if dim == 2: L = (32, 32) elif dim == 3: L = (16, 16, 16) dh = ps.create_data_handling(domain_size=L, periodicity=True, default_target=ps.Target.CPU) n_field = dh.add_array('n', values_per_cell=1) j_field = dh.add_array('j', values_per_cell=3 ** dim // 2, field_type=ps.FieldType.STAGGERED_FLUX) velocity_field = dh.add_array('v', values_per_cell=dim) D = 0.0666 time = 100 def grad(f): return sp.Matrix([ps.fd.diff(f, i) for i in range(dim)]) flux_eq = - D * grad(n_field) fvm_eq = ps.fd.FVM1stOrder(n_field, flux=flux_eq) vof_adv = ps.fd.VOF(j_field, velocity_field, n_field) # merge calculation of advection and diffusion terms flux = [] for adv, div in zip(vof_adv, fvm_eq.discrete_flux(j_field)): assert adv.lhs == div.lhs flux.append(ps.Assignment(adv.lhs, adv.rhs + div.rhs)) flux_kernel = ps.create_staggered_kernel(flux).compile() pde_kernel = ps.create_kernel(fvm_eq.discrete_continuity(j_field)).compile() sync_conc = dh.synchronization_function([n_field.name]) # analytical density calculation def density(pos: np.ndarray, time: int, D: float): return (4 * np.pi * D * time)**(-dim / 2) * \ np.exp(-np.sum(np.square(pos), axis=-1) / (4 * D * time)) pos = np.zeros((*L, dim)) xpos = np.arange(-L[0] // 2, L[0] // 2) ypos = np.arange(-L[1] // 2, L[1] // 2) if dim == 2: pos[..., 1], pos[..., 0] = np.meshgrid(xpos, ypos) elif dim == 3: zpos = np.arange(-L[2] // 2, L[2] // 2) pos[..., 2], pos[..., 1], pos[..., 0] = np.meshgrid(xpos, ypos, zpos) pos += 0.5 def run(velocity: np.ndarray, time: int): dh.fill(n_field.name, np.nan, ghost_layers=True, inner_ghost_layers=True) dh.fill(j_field.name, np.nan, ghost_layers=True, inner_ghost_layers=True) # set initial values for velocity and density for i in range(dim): dh.fill(velocity_field.name, velocity[i], i, ghost_layers=True, inner_ghost_layers=True) dh.fill(n_field.name, 0) if dim == 2: start = ps.make_slice[L[0] // 2 - 1:L[0] // 2 + 1, L[1] // 2 - 1:L[1] // 2 + 1] else: start = ps.make_slice[L[0] // 2 - 1:L[0] // 2 + 1, L[1] // 2 - 1:L[1] // 2 + 1, L[2] // 2 - 1:L[2] // 2 + 1] dh.fill(n_field.name, 2**-dim, slice_obj=start) sync_conc() for i in range(time): dh.run_kernel(flux_kernel) dh.run_kernel(pde_kernel) sync_conc() sim_density = dh.gather_array(n_field.name) # check that mass was conserved assert np.isclose(sim_density.sum(), 1) assert np.all(sim_density > 0) # check that the maximum is in the right place peak = np.unravel_index(np.argmax(sim_density, axis=None), sim_density.shape) assert np.allclose(peak, np.array(L) // 2 - 0.5 + velocity * time, atol=0.5) # check the concentration profile if np.linalg.norm(velocity) == 0: calc_density = density(pos - velocity * time, time, D) target = [time, D] pytest.importorskip('scipy.optimize') from scipy.optimize import curve_fit popt, _ = curve_fit(lambda x, t, D: density(x - velocity * time, t, D), pos.reshape(-1, dim), sim_density.reshape(-1), p0=target) assert np.isclose(popt[0], time, rtol=0.1) assert np.isclose(popt[1], D, rtol=0.1) assert np.allclose(calc_density, sim_density, atol=1e-4) return lambda v: run(np.array(v), time) advection_diffusion.runners = {} @pytest.mark.parametrize("velocity", list(product([0, -0.047, 0.041], [0, -0.031, 0.023]))) def test_advection_diffusion_2d(velocity): if 2 not in advection_diffusion.runners: advection_diffusion.runners[2] = advection_diffusion(2) advection_diffusion.runners[2](velocity) @pytest.mark.parametrize("velocity", list(product([0, -0.047, 0.041], [0, -0.031, 0.023], [0, -0.017, 0.011]))) @pytest.mark.longrun def test_advection_diffusion_3d(velocity): if 3 not in advection_diffusion.runners: advection_diffusion.runners[3] = advection_diffusion(3) advection_diffusion.runners[3](velocity) def advection_diffusion_fluctuations(dim: int): # parameters if dim == 2: L = (32, 32) stencil_factor = np.sqrt(1 / (1 + np.sqrt(2))) elif dim == 3: L = (16, 16, 16) stencil_factor = np.sqrt(1 / (1 + 2 * np.sqrt(2) + 4.0 / 3.0 * np.sqrt(3))) dh = ps.create_data_handling(domain_size=L, periodicity=True, default_target=ps.Target.CPU) n_field = dh.add_array('n', values_per_cell=1) j_field = dh.add_array('j', values_per_cell=3 ** dim // 2, field_type=ps.FieldType.STAGGERED_FLUX) velocity_field = dh.add_array('v', values_per_cell=dim) D = 0.00666 time = 10000 def grad(f): return sp.Matrix([ps.fd.diff(f, i) for i in range(dim)]) flux_eq = - D * grad(n_field) fvm_eq = ps.fd.FVM1stOrder(n_field, flux=flux_eq) vof_adv = ps.fd.VOF(j_field, velocity_field, n_field) # merge calculation of advection and diffusion terms flux = [] for adv, div in zip(vof_adv, fvm_eq.discrete_flux(j_field)): assert adv.lhs == div.lhs flux.append(ps.Assignment(adv.lhs, adv.rhs + div.rhs)) flux = ps.AssignmentCollection(flux) rng_symbol_gen = random_symbol(flux.subexpressions, dim=dh.dim) for i in range(len(flux.main_assignments)): n = j_field.staggered_stencil[i] assert flux.main_assignments[i].lhs == j_field.staggered_access(n) # calculate mean density dens = (n_field.neighbor_vector(n) + n_field.center_vector)[0] / 2 # multyply by smoothed haviside function so that fluctuation will not get bigger that the density dens *= sp.Max(0, sp.Min(1.0, n_field.neighbor_vector(n)[0]) * sp.Min(1.0, n_field.center_vector[0])) # lenght of the vector length = sp.sqrt(len(j_field.staggered_stencil[i])) # amplitude of the random fluctuations fluct = sp.sqrt(2 * dens * D) * sp.sqrt(1 / length) * stencil_factor # add fluctuations fluct *= 2 * (next(rng_symbol_gen) - 0.5) * sp.sqrt(3) flux.main_assignments[i] = ps.Assignment(flux.main_assignments[i].lhs, flux.main_assignments[i].rhs + fluct) # Add the folding to the flux, so that the random numbers persist through the ghostlayers. fold = {ps.astnodes.LoopOverCoordinate.get_loop_counter_symbol(i): ps.astnodes.LoopOverCoordinate.get_loop_counter_symbol(i) % L[i] for i in range(len(L))} flux.subs(fold) flux_kernel = ps.create_staggered_kernel(flux).compile() pde_kernel = ps.create_kernel(fvm_eq.discrete_continuity(j_field)).compile() sync_conc = dh.synchronization_function([n_field.name]) # analytical density distribution calculation def P(rho, density_init): res = [] for r in rho: res.append(np.power(density_init, r) * np.exp(-density_init) / np.math.gamma(r + 1)) return np.array(res) def run(density_init: float, velocity: np.ndarray, time: int): dh.fill(n_field.name, np.nan, ghost_layers=True, inner_ghost_layers=True) dh.fill(j_field.name, np.nan, ghost_layers=True, inner_ghost_layers=True) # set initial values for velocity and density for i in range(dim): dh.fill(velocity_field.name, velocity[i], i, ghost_layers=True, inner_ghost_layers=True) dh.fill(n_field.name, density_init) measurement_intervall = 10 warm_up = 1000 data = [] sync_conc() for i in range(warm_up): dh.run_kernel(flux_kernel, seed=42, time_step=i) dh.run_kernel(pde_kernel) sync_conc() for i in range(time): dh.run_kernel(flux_kernel, seed=42, time_step=i + warm_up) dh.run_kernel(pde_kernel) sync_conc() if(i % measurement_intervall == 0): data = np.append(data, dh.gather_array(n_field.name).ravel(), 0) # test mass conservation np.testing.assert_almost_equal(dh.gather_array(n_field.name).mean(), density_init) n_bins = 50 density_value, bins = np.histogram(data, density=True, bins=n_bins) bins_mean = bins[:-1] + (bins[1:] - bins[:-1]) / 2 analytical_value = P(bins_mean, density_init) print(density_value - analytical_value) np.testing.assert_allclose(density_value, analytical_value, atol=2e-3) return lambda density_init, v: run(density_init, np.array(v), time) advection_diffusion_fluctuations.runners = {} @pytest.mark.parametrize("velocity", list(product([0, 0.00041], [0, -0.00031]))) @pytest.mark.parametrize("density", [27.0, 56.5]) @pytest.mark.longrun def test_advection_diffusion_fluctuation_2d(density, velocity): if 2 not in advection_diffusion_fluctuations.runners: advection_diffusion_fluctuations.runners[2] = advection_diffusion_fluctuations(2) advection_diffusion_fluctuations.runners[2](density, velocity) @pytest.mark.parametrize("velocity", [(0.0, 0.0, 0.0), (0.00043, -0.00017, 0.00028)]) @pytest.mark.parametrize("density", [27.0, 56.5]) @pytest.mark.longrun def test_advection_diffusion_fluctuation_3d(density, velocity): if 3 not in advection_diffusion_fluctuations.runners: advection_diffusion_fluctuations.runners[3] = advection_diffusion_fluctuations(3) advection_diffusion_fluctuations.runners[3](density, velocity) def diffusion_reaction(fluctuations: bool): # parameters L = (32, 32) stencil_factor = np.sqrt(1 / (1 + np.sqrt(2))) dh = ps.create_data_handling(domain_size=L, periodicity=True, default_target=ps.Target.CPU) species = 2 n_fields = [] j_fields = [] r_flux_fields = [] for i in range(species): n_fields.append(dh.add_array(f'n_{i}', values_per_cell=1)) j_fields.append(dh.add_array(f'j_{i}', values_per_cell=3 ** dh.dim // 2, field_type=ps.FieldType.STAGGERED_FLUX)) r_flux_fields.append(dh.add_array(f'r_{i}', values_per_cell=1)) velocity_field = dh.add_array('v', values_per_cell=dh.dim) D = 0.00666 time = 1000 r_order = [2.0, 0.0] r_rate_const = 0.00001 r_coefs = [-2, 1] def grad(f): return sp.Matrix([ps.fd.diff(f, i) for i in range(dh.dim)]) flux_eq = - D * grad(n_fields[0]) fvm_eq = ps.fd.FVM1stOrder(n_fields[0], flux=flux_eq) vof_adv = ps.fd.VOF(j_fields[0], velocity_field, n_fields[0]) continuity_assignments = fvm_eq.discrete_continuity(j_fields[0]) # merge calculation of advection and diffusion terms flux = [] for adv, div in zip(vof_adv, fvm_eq.discrete_flux(j_fields[0])): assert adv.lhs == div.lhs flux.append(ps.Assignment(adv.lhs, adv.rhs + div.rhs)) flux = ps.AssignmentCollection(flux) if(fluctuations): rng_symbol_gen = random_symbol(flux.subexpressions, dim=dh.dim) for i in range(len(flux.main_assignments)): n = j_fields[0].staggered_stencil[i] assert flux.main_assignments[i].lhs == j_fields[0].staggered_access(n) # calculate mean density dens = (n_fields[0].neighbor_vector(n) + n_fields[0].center_vector)[0] / 2 # multyply by smoothed haviside function so that fluctuation will not get bigger that the density dens *= sp.Max(0, sp.Min(1.0, n_fields[0].neighbor_vector(n)[0]) * sp.Min(1.0, n_fields[0].center_vector[0])) # lenght of the vector length = sp.sqrt(len(j_fields[0].staggered_stencil[i])) # amplitude of the random fluctuations fluct = sp.sqrt(2 * dens * D) * sp.sqrt(1 / length) * stencil_factor # add fluctuations fluct *= 2 * (next(rng_symbol_gen) - 0.5) * sp.sqrt(3) flux.main_assignments[i] = ps.Assignment(flux.main_assignments[i].lhs, flux.main_assignments[i].rhs + fluct) # Add the folding to the flux, so that the random numbers persist through the ghostlayers. fold = {ps.astnodes.LoopOverCoordinate.get_loop_counter_symbol(i): ps.astnodes.LoopOverCoordinate.get_loop_counter_symbol(i) % L[i] for i in range(len(L))} flux.subs(fold) r_flux = NodeCollection([SympyAssignment(j_fields[i].center, 0) for i in range(species)]) reaction = r_rate_const for i in range(species): reaction *= sp.Pow(n_fields[i].center, r_order[i]) new_assignments = [] if fluctuations: rng_symbol_gen = random_symbol(new_assignments, dim=dh.dim) reaction_fluctuations = sp.sqrt(sp.Abs(reaction)) * 2 * (next(rng_symbol_gen) - 0.5) * sp.sqrt(3) reaction_fluctuations *= sp.Min(1, sp.Abs(reaction**2)) else: reaction_fluctuations = 0.0 for i in range(species): r_flux.all_assignments[i] = SympyAssignment( r_flux_fields[i].center, (reaction + reaction_fluctuations) * r_coefs[i]) [r_flux.all_assignments.insert(0, new) for new in new_assignments] continuity_assignments = [SympyAssignment(*assignment.args) for assignment in continuity_assignments] continuity_assignments.append(SympyAssignment(n_fields[0].center, n_fields[0].center + r_flux_fields[0].center)) flux_kernel = ps.create_staggered_kernel(flux).compile() reaction_kernel = ps.create_kernel(r_flux).compile() config = ps.CreateKernelConfig(allow_double_writes=True) pde_kernel = ps.create_kernel(continuity_assignments, config=config).compile() sync_conc = dh.synchronization_function([n_fields[0].name, n_fields[1].name]) def f(t, r, n0, fac, fluctuations): """Calculates the amount of product created after a certain time of a reaction with form xA -> B Args: t: Time of the reation r: Reaction rate constant n0: Initial density of the fac: Reaction order of A (this in most cases equals the stochometric coefficient x) fluctuations: Boolian whether fluctuations were included during the reaction. """ if fluctuations: return 1 / fac * (n0 + n0 / (n0 - (n0 + 1) * np.exp(fac * r * t))) return 1 / fac * (n0 - (1 / (fac * r * t + (1 / n0)))) def run(density_init: float, velocity: np.ndarray, time: int): for i in range(species): dh.fill(n_fields[i].name, np.nan, ghost_layers=True, inner_ghost_layers=True) dh.fill(j_fields[i].name, 0.0, ghost_layers=True, inner_ghost_layers=True) dh.fill(r_flux_fields[i].name, 0.0, ghost_layers=True, inner_ghost_layers=True) # set initial values for velocity and density for i in range(dh.dim): dh.fill(velocity_field.name, velocity[i], i, ghost_layers=True, inner_ghost_layers=True) dh.fill(n_fields[0].name, density_init) dh.fill(n_fields[1].name, 0.0) measurement_intervall = 10 data = [] sync_conc() for i in range(time): if(i % measurement_intervall == 0): data.append([i, dh.gather_array(n_fields[1].name).mean(), dh.gather_array(n_fields[0].name).mean()]) dh.run_kernel(reaction_kernel, seed=41, time_step=i) for s_idx in range(species): flux_kernel(n_0=dh.cpu_arrays[n_fields[s_idx].name], j_0=dh.cpu_arrays[j_fields[s_idx].name], v=dh.cpu_arrays[velocity_field.name], seed=42 + s_idx, time_step=i) pde_kernel(n_0=dh.cpu_arrays[n_fields[s_idx].name], j_0=dh.cpu_arrays[j_fields[s_idx].name], r_0=dh.cpu_arrays[r_flux_fields[s_idx].name]) sync_conc() data = np.array(data).transpose() x = data[0] analytical_value = f(x, r_rate_const, density_init, abs(r_coefs[0]), fluctuations) # test mass conservation np.testing.assert_almost_equal( dh.gather_array(n_fields[0].name).mean() + 2 * dh.gather_array(n_fields[1].name).mean(), density_init) r_tol = 2e-3 if fluctuations: r_tol = 3e-2 np.testing.assert_allclose(data[1], analytical_value, rtol=r_tol) return lambda density_init, v: run(density_init, np.array(v), time) advection_diffusion_fluctuations.runners = {} @pytest.mark.parametrize("velocity", list(product([0, 0.0041], [0, -0.0031]))) @pytest.mark.parametrize("density", [27.0, 56.5]) @pytest.mark.parametrize("fluctuations", [False, True]) @pytest.mark.longrun def test_diffusion_reaction(fluctuations, density, velocity): diffusion_reaction.runner = diffusion_reaction(fluctuations) diffusion_reaction.runner(density, velocity) def VOF2(j: ps.field.Field, v: ps.field.Field, ρ: ps.field.Field, simplify=True): """Volume-of-fluid discretization of advection Args: j: the staggered field to write the fluxes to. Should have a D2Q9/D3Q27 stencil. Other stencils work too, but incur a small error (D2Q5/D3Q7: v^2, D3Q19: v^3). v: the flow velocity field ρ: the quantity to advect simplify: whether to simplify the generated expressions (slow, but makes them much more readable and faster) """ dim = j.spatial_dimensions assert ps.FieldType.is_staggered(j) def assume_velocity(e): if not simplify: return e repl = {} for c in e.atoms(sp.StrictGreaterThan, sp.GreaterThan): if isinstance(c.lhs, ps.field.Field.Access) and c.lhs.field == v and isinstance(c.rhs, sp.Number): if c.rhs <= -1: repl[c] = True elif c.rhs >= 1: repl[c] = False for c in e.atoms(sp.StrictLessThan, sp.LessThan): if isinstance(c.lhs, ps.field.Field.Access) and c.lhs.field == v and isinstance(c.rhs, sp.Number): if c.rhs >= 1: repl[c] = True elif c.rhs <= -1: repl[c] = False for c in e.atoms(sp.Equality): if isinstance(c.lhs, ps.field.Field.Access) and c.lhs.field == v and isinstance(c.rhs, sp.Number): if c.rhs <= -1 or c.rhs >= 1: repl[c] = False return e.subs(repl) class AABB: def __init__(self, corner0, corner1): self.dim = len(corner0) self.minCorner = sp.zeros(self.dim, 1) self.maxCorner = sp.zeros(self.dim, 1) for i in range(self.dim): self.minCorner[i] = sp.Piecewise((corner0[i], corner0[i] < corner1[i]), (corner1[i], True)) self.maxCorner[i] = sp.Piecewise((corner1[i], corner0[i] < corner1[i]), (corner0[i], True)) def intersect(self, other): minCorner = [sp.Max(self.minCorner[d], other.minCorner[d]) for d in range(self.dim)] maxCorner = [sp.Max(minCorner[d], sp.Min(self.maxCorner[d], other.maxCorner[d])) for d in range(self.dim)] return AABB(minCorner, maxCorner) @property def volume(self): v = sp.prod([self.maxCorner[d] - self.minCorner[d] for d in range(self.dim)]) if simplify: return sp.simplify(assume_velocity(v.rewrite(sp.Piecewise))) else: return v fluxes = [] cell = AABB([-0.5] * dim, [0.5] * dim) cell_s = AABB(sp.Matrix([-0.5] * dim) + v.center_vector, sp.Matrix([0.5] * dim) + v.center_vector) for d, neighbor in enumerate(j.staggered_stencil): c = sp.Matrix(ps.stencil.direction_string_to_offset(neighbor)[:dim]) cell_n = AABB(sp.Matrix([-0.5] * dim) + c, sp.Matrix([0.5] * dim) + c) cell_ns = AABB(sp.Matrix([-0.5] * dim) + c + v.neighbor_vector(neighbor), sp.Matrix([0.5] * dim) + c + v.neighbor_vector(neighbor)) fluxes.append(assume_velocity(ρ.center_vector * cell_s.intersect(cell_n).volume - ρ.neighbor_vector(neighbor) * cell_ns.intersect(cell).volume)) assignments = [] for i, d in enumerate(j.staggered_stencil): for lhs, rhs in zip(j.staggered_vector_access(d).values(), fluxes[i].values()): assignments.append(ps.Assignment(lhs, rhs)) return assignments @pytest.mark.parametrize("dim", [2, 3]) def test_advection(dim): L = (8,) * dim dh = ps.create_data_handling(L, periodicity=True, default_target=ps.Target.CPU) c = dh.add_array('c', values_per_cell=1) j = dh.add_array('j', values_per_cell=3 ** dh.dim // 2, field_type=ps.FieldType.STAGGERED_FLUX) u = dh.add_array('u', values_per_cell=dh.dim) dh.cpu_arrays[c.name][:] = (np.random.random([l + 2 for l in L])) dh.cpu_arrays[u.name][:] = (np.random.random([l + 2 for l in L] + [dim]) - 0.5) / 5 vof1 = ps.create_kernel(ps.fd.VOF(j, u, c)).compile() dh.fill(j.name, np.nan, ghost_layers=True) dh.run_kernel(vof1) j1 = dh.gather_array(j.name).copy() vof2 = ps.create_kernel(VOF2(j, u, c, simplify=False)).compile() dh.fill(j.name, np.nan, ghost_layers=True) dh.run_kernel(vof2) j2 = dh.gather_array(j.name) assert np.allclose(j1, j2) @pytest.mark.parametrize("stencil", ["D2Q5", "D2Q9"]) def test_ek(stencil): # parameters L = (40, 40) D = sp.Symbol("D") z = sp.Symbol("z") # data structures dh = ps.create_data_handling(L, periodicity=True, default_target=ps.Target.CPU) c = dh.add_array('c', values_per_cell=1) j = dh.add_array('j', values_per_cell=int(stencil[-1]) // 2, field_type=ps.FieldType.STAGGERED_FLUX) Phi = dh.add_array('Φ', values_per_cell=1) # perform automatic discretization def Gradient(f): return sp.Matrix([ps.fd.diff(f, i) for i in range(dh.dim)]) flux_eq = -D * Gradient(c) + D * z * c.center * Gradient(Phi) disc = ps.fd.FVM1stOrder(c, flux_eq) flux_assignments = disc.discrete_flux(j) continuity_assignments = disc.discrete_continuity(j) # manual discretization x_staggered = - c[-1, 0] + c[0, 0] + z * (c[-1, 0] + c[0, 0]) / 2 * (Phi[-1, 0] - Phi[0, 0]) y_staggered = - c[0, -1] + c[0, 0] + z * (c[0, -1] + c[0, 0]) / 2 * (Phi[0, -1] - Phi[0, 0]) xy_staggered = (- c[-1, -1] + c[0, 0]) / sp.sqrt(2) + \ z * (c[-1, -1] + c[0, 0]) / 2 * (Phi[-1, -1] - Phi[0, 0]) / sp.sqrt(2) xY_staggered = (- c[-1, 1] + c[0, 0]) / sp.sqrt(2) + \ z * (c[-1, 1] + c[0, 0]) / 2 * (Phi[-1, 1] - Phi[0, 0]) / sp.sqrt(2) A0 = (1 + sp.sqrt(2) if j.index_shape[0] == 4 else 1) jj = j.staggered_access divergence = -1 * sum([jj(d) for d in j.staggered_stencil + [ps.stencil.inverse_direction_string(d) for d in j.staggered_stencil]]) update = [ps.Assignment(c.center, c.center + divergence)] flux = [ps.Assignment(j.staggered_access("W"), D * x_staggered / A0), ps.Assignment(j.staggered_access("S"), D * y_staggered / A0)] if j.index_shape[0] == 4: flux += [ps.Assignment(j.staggered_access("SW"), D * xy_staggered / A0), ps.Assignment(j.staggered_access("NW"), D * xY_staggered / A0)] # compare for a, b in zip(flux, flux_assignments): assert a.lhs == b.lhs assert sp.simplify(a.rhs - b.rhs) == 0 for a, b in zip(update, continuity_assignments): assert a.lhs == b.lhs assert a.rhs == b.rhs # TODO: test source @pytest.mark.parametrize("stencil", ["D2Q5", "D2Q9", "D3Q7", "D3Q19", "D3Q27"]) @pytest.mark.parametrize("derivative", [0, 1]) def test_flux_stencil(stencil, derivative): L = (40, ) * int(stencil[1]) dh = ps.create_data_handling(L, periodicity=True, default_target=ps.Target.CPU) c = dh.add_array('c', values_per_cell=1) j = dh.add_array('j', values_per_cell=int(stencil[3:]) // 2, field_type=ps.FieldType.STAGGERED_FLUX) def Gradient(f): return sp.Matrix([ps.fd.diff(f, i) for i in range(dh.dim)]) eq = [sp.Matrix([sp.Symbol(f"a_{i}") * c.center for i in range(dh.dim)]), Gradient(c)][derivative] disc = ps.fd.FVM1stOrder(c, flux=eq) # check the continuity continuity_assignments = disc.discrete_continuity(j) assert [len(a.rhs.atoms(ps.field.Field.Access)) for a in continuity_assignments] == \ [int(stencil[3:])] * len(continuity_assignments) # check the flux flux_assignments = disc.discrete_flux(j) assert [len(a.rhs.atoms(ps.field.Field.Access)) for a in flux_assignments] == [2] * len(flux_assignments) @pytest.mark.parametrize("stencil", ["D2Q5", "D2Q9", "D3Q7", "D3Q19", "D3Q27"]) def test_source_stencil(stencil): L = (40, ) * int(stencil[1]) dh = ps.create_data_handling(L, periodicity=True, default_target=ps.Target.CPU) c = dh.add_array('c', values_per_cell=1) j = dh.add_array('j', values_per_cell=int(stencil[3:]) // 2, field_type=ps.FieldType.STAGGERED_FLUX) continuity_ref = ps.fd.FVM1stOrder(c).discrete_continuity(j) for eq in [c.center] + [ps.fd.diff(c, i) for i in range(dh.dim)]: disc = ps.fd.FVM1stOrder(c, source=eq) diff = sp.simplify(disc.discrete_continuity(j)[0].rhs - continuity_ref[0].rhs) if type(eq) is ps.field.Field.Access: assert len(diff.atoms(ps.field.Field.Access)) == 1 else: assert len(diff.atoms(ps.field.Field.Access)) == 2 def test_fvm_staggered_simplification(): D = sp.Symbol("D") data_type = "float64" c = ps.fields(f"c: {data_type}[2D]", layout='fzyx') j = ps.fields(f"j(2): {data_type}[2D]", layout='fzyx', field_type=ps.FieldType.STAGGERED_FLUX) grad_c = sp.Matrix([ps.fd.diff(c, i) for i in range(c.spatial_dimensions)]) ek = ps.fd.FVM1stOrder(c, flux=-D * grad_c) ast = ps.create_staggered_kernel(ek.discrete_flux(j)) code = ps.get_code_str(ast) assert '_size_c_0 - 1 < _size_c_0 - 1' not in code