{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pystencils as ps\n", "import sympy as sp\n", "\n", "from pystencils.stencil import coefficient_list, plot_expression, plot" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAADnCAYAAAC9roUQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXAc55ke8Kfnwj0HMIMZYAgQBy/wBiGLFCWKpMVDokSJZco6TJfs2FmvY1XW6/yTrMt2srbjdZLKere8rsTOxt6tuHbXjuNDtCQSBAXwBEUIhACCBImDOEjcB0HcmKvzB9TNGdxHd8+B51eFktgYzDRI4MGLt9/+PkEURRARkTZ04T4BIqLVhKFLRKQhhi4RkYYYukREGmLoEhFpyLDA+znaQES0dMJc72ClS0SkIYYuEZGGGLpERBpi6BIRaYihS0SkIYYuEZGGGLpERBpi6BIRaYihS0SkIYYuEZGGGLpERBpi6BIRaYihS0SkIYYuEZGGGLpERBpi6BIRaYihS0SkIYYuEZGGGLpERBpi6BIRaYihS0SkIYYuEZGGGLpERBpi6BIRaYihS0SkIYYuEZGGGLpERBpi6BIRaYihS0SkIYYuEZGGGLpERBpi6BIRaYihS0SkIYYuEZGGGLpERBpi6BIRaYihS0SkIYYuEZGGGLpERBpi6JImvF4vfve736GjoyPcp0IUVoZwnwDFvtbWVvz617/GT37yE+zatQt79+5Fenp6yJvD4UBcXFy4T5VIdYIoivO9f953Es2npaUFFy5cQHNzM0RRRF1dHY4cOQK73Y7e3l709PTA6/XKj7darXA4HCFhbLfbYTQaw/hZEC2LMNc7WOmS4lpaWlBWVoaWlhYkJyfj+eefx/r16/HjH/8YhYWFKCoqAgCIoojBwUH09PSEvN27dw9+vx8AIAgCUlNT5WpYCuO0tDTo9fpwfppEy8LQJcUEh21KSgpeeOEF7Nq1C0ajEcPDwwCmglYiCAJsNhtsNhs2btwoHw8EAhgYGJgRxnfv3kUgEAAA6HQ62O32GWFss9mg0/FSBUUuhi6t2HxhK5GCcIF2lvxYu90Ou92OzZs3y8d9Ph/6+/tDgri9vR21tbXyYwwGQ0gIS/9vsVggCHP+xkekGYYuLdtiwlYiBZ5UqS6HwWCA0+mE0+kMOe7xeNDb2yv3iXt6etDc3Izq6mr5MXFxcTP6xQ6HA8nJyQxj0hRDl5ZstrAtKiqCwTD3l5MUbIupdJfKZDLB7XbD7XaHHJ+YmAipint7e3Hnzh3cuHFDfkxCQsKskxSJiYmKnycRwNClRRJFUQ7b1tbWRYetRGovrKTSXar4+HhkZ2cjOzs75Pjo6OiMML558yYmJibkxyQnJ3OsjVTB0KV5zRa2x44dw65duxYVthI1K92lSkpKQm5uLnJzc+VjoihieHh4xsW7ysrKkLE2i8UyI4w51kZLwdClWSkVtpJwVLpLIQgCzGYzzGYz1q1bJx9fyljb9J4xx9poNgxdCjE9bM1m84rCVhJJle5SLHWsrb6+nmNtNC+GLgFQL2wlSxkZiwbzjbX19fWFTFJwrI2CMXRXOVEU0dzcjLKyMrS1tSkettNFantBKQaDAS6XCy6XK+S4NNYmXbhbzFib9P8ca4stDN1VarawffHFF1FYWKhK2AqCAEEQYqbSXSqOtZGEobvKaB22wXQ6XcxXuku12LG2np4ejrXFCIbuKhHOsJWs5kp3qTjWFrsYujFOFEXcu3cPZWVluH//fljCVsJKd2U41hYbGLoxKpLCVsJKVx1zjbX5/X4MDAyETFJIq7VJ/w7SFMb0MOZYm3oYujFmethaLBa89NJL2LlzZ9jCVqLT6Ri6GtLr9XA4HHA4HLOOtQVPUnR0dODWrVvyY4LH2oID2WKxAACnKVaAoRsjIjlsJYIgsL0QARYz1iYF8vSxtsHBQVRUVODtt9/G5z73Oa1PPSZExncjLVs0hK2E7YXINtdY2/j4OBobG/Hee+/h5s2bePToEcbGxsJ0ltEvsr4radFEUURTUxPKysrw4MGDiA5bCS+kRZ/JyUlcvXoV5eXlEAQBb775Jqqrq/HMM8+E+9SiVmR+d9KcojFsJax0o0cgEEB1dTXOnz+PkZERbN++Hc899xwGBwdRW1sLk8kU7lOMWpH9XUqy2cL2+PHj2LlzZ9SM/LDSjQ4tLS04c+YMurq6kJWVhTfeeANr1qwBAPT09AAAZ35XgKEb4WIhbCWsdCPbwMAAiouLcefOHVgsFrz66qvYsmVLyKSCdBMGK93lY+hGKFEU0djYiLKyMrS3t0d12Eo4MhaZJiYmcPHiRXz44YfQ6/V47rnnsGfPnlmrWY/HA4CV7kowdCPM9LC1Wq1RH7YSjoxFlkAggMrKSpSWlmJ8fBw7d+7Epz/9aaSkpMz5Max0V46hGyFiOWwlbC9EjsbGRhQXF6Onpwc5OTk4evQoMjIyFvw4qdJl6C4fQzfMZgvbl19+GTt27IiZsJXwQlr49fb2ori4GA0NDUhNTcXrr7+OTZs2LfoOM6nSZXth+Ri6YbKawlbCSjd8xsbGUFZWho8++ghGoxFHjhzBk08+ueQxQ4/HA6PRyNuAV4ChqzFRFNHQ0ICysjJ0dHSsirCVqFnp1veMoHt4Avvy7ao8f7Ty+/2oqKhAWVkZJicn8cQTT+DAgQNISkpa1vNJoUvLx9DVyGoOW4lala7HF8AXf1kBr1/Ez0/twrZMq+KvEW1EUUR9fT2Ki4vR39+P/Px8HD16FOnp6St6Xq/Xy37uCjF0VcawfUytkbHTtZ3w+qee9xfXWvHXn1ndodvd3Y2zZ8/i3r17sNvtOHXqFNatW6dIS4CV7soxdFUyPWxtNhteeeUVbN++fdWFrUSNkTGPL4BfXGuR/3y5qR/3+kaRZ1/er8/RbGRkBKWlpbhx4wbi4+Nx7NgxFBUVKfr1xkp35Ri6Kjh//jy+973vwel0Ijc3F0eOHMG+fftWfYWgRnvhdG0nuocn5T+LAP53eTP+8/Gtir5OJPP5fLh27RouXboEr9eL3bt3Y//+/UhISFD8tVjprhxDVwXj4+Po7e3FmjVrYDKZcPHiRZSXlyM9PR0ulwtOp1P+72raRFCn08nbxyhhepUrOXenB19+KvarXVEUcfv2bZSUlODhw4fYuHEjjhw5grS0NNVe0+v1znvzBC2MoauCnTt34tVXX8Ubb7wBq9WK7u5udHV1obu7G7dv30ZlZaX8WJvNFhLCLpcLVqs1JkdylK50p1e5ktVQ7XZ0dODMmTNoa2uD0+nEW2+9hby8PNVf1+PxsL2wQgxdFZhMJrl/mZGREXKnj7SjqxTC0n+D962Ki4ubEcTp6elR/2udkiNjc1W5klitdoeGhnD+/HlUV1cjKSkJx48fR2FhoWb7mXm93qj/Ogw3hq4KpEpAumUyWPCOrhs2bJCPe71e9PT0oKurSw7i6upqTE5Oyh+XlpY2I4xTUlKipipWstKdq8qVxFq16/V6cfXqVVy+fBmBQADPPPMM9u3bp3l7ipXuyjF0VSBVArOF7nwfM32rFGlr7eCqePoGggkJCSEh7HK5YLfbI3JBcyVHxt652bHgY87d6cE3j/qQZIq8v4vFEkURN2/eRElJCYaGhrB582YcPnwYNpstLOfDC2krF71fjRFMqgSk+9SXK3hr7YKCAvn4xMSEXBVLYVxZWSm/nk6ng8PhmFEVL/cuJKUoOTJ26lPZOHenR/5zeXM/Jn0B7MlJRbxxakRqnT0JicboHc+7f/8+zpw5g/b2dmRmZuLkyZNYu3Zt2M7H7/cjEAiw0l0hhq4KDAYDBEFYUqW7FPHx8cjOzkZ2drZ8LBAIYGBgICSIW1paUFNTIz8mOTl5xvSE3W7XrB+oZHvhyCYnjmxyyn9++adX0Tk0gb84shGZFuVHpbQ0ODiIkpIS1NbWIiUlBSdOnMCOHTvC3kbiWrrKYOiqQBAEmEwm1UJ3NjqdDna7HXa7HVu3Pu5jjo2NhVyw6+rqQnNzszy6ZTAY4HA45NaE0+mE0+lUZcaTq4zNb3JyEpcvX5Y3gdy/fz+efvrpiKksuZauMhi6KjEajZqG7lwSExORm5uL3Nxc+Zjf70dfX58cwl1dXaivr0dVVZX8GIvFMqMqTk1NXVG1xVXGZjfXJpAWiyXcpxaCa+kqg6GrEpPJtOKerlr0er1c0W7fvh3A1AWbkZGRGVVxQ0ODXJ2aTKZZb/BY7DchK92Z5tsEMtJwLV1lMHRVonV7YaUEQUBKSgpSUlKwbt06+bjP50NPT09IVVxbW4uPPvpIfkxqauqMILZYLDOqYla6jy1mE8hIw0pXGQxdlURb6M7FYDAgMzMTmZmZ8jFRFPHo0aMZVfHt27flx8THx8+YnggEAqs+dJeyCWSk4YU0ZTB0VWI0GjExMRHu01CFIAiwWq2wWq3YuHGjfNzj8aC7uzskjKuqquRv1vr6ekxMTCArKyvkwl1ycnJEV3hKWM4mkJGGF9KUwdBViclkwvDwcLhPQ1MmkwlZWVnIysqSj4miiIGBAXR3d+O3v/0t6urqcP/+fdTW1sqPSUpKmlEV2+32sC2B6fUHcKmxD/1jHox5/Bjz+jHm8WHc48eoZ+r/7z8cx9CEF999cQv25s2/wMxyN4GMNKx0lcHQVUmstBdWSrp9OS0tDc3NzTCZTPjGN76B8fHxGVXx9evX4fP5AExd7JvtBo/ExETVz/lsXTf+8v26RT22om1gztBd6SaQkYaVrjIYuiph6M4UfCEtISEBOTk5yMnJkd8fCATQ398fsv5EU1MTqqur5ceYzeYZQZyamqroeW7LtECvE+APzN9/zrIl4Gv7Zq7spdQmkJGGF9KUEd1fBREsUuZ0V0IURUWrsoVGxqTblx0OB7Zt2yYfHx0dnbEqW1NTk/xcRqMRrXXDGDMko6rSAG/+WjidTsTHxy/rPNemJuLVnW786saDOR9j0uvw15/ZDmNQC0TpTSAjDUfGlMHQVYnJZILP50MgENDsNtuVEkURGO9C4OFNiA9rIT5qgC7jAPR5ryvy/MsdGUtKSkJ+fj7y8/PlYz6fD319fXII/6bhEsZ72/BB8VlUxE+FgtVqnbEY0GLXKn7ryWz8rroDHv/sPyTefjYPOalTYarWJpCRhtuvK4Ohq5LgRW8ieXcI0T8BcfAOxIe1CDysBSb7Q98/0avYaym5ypjBYJCDFAB+0pIC/aNxfOXNrRDGHy24VnFwiyI9PV3+9xJFEefu9ODvLjbNGbiFayx4o2jqYqGam0BGGq4wpgyGrkqC19SNxND1t5cg0FECTD4EMPev/EJS1pzvWyo1Nqac/vwpZjMys5xzrlUshXFNTQ0qKirkj0tNTcWkyYwP7k/ivicOhmQbNrgdGJr0o2/0cZso3qDDd54vwNjoaMgmkC+88AKeeOKJmN50lJtSKoOhqxKpIojUW4ED9/8I+EYXfJzSoRuOmyMWWqu4tqkNvyyrQVXDHfjGRpBg1ONTa23YYXLgIRLx+8YxGFNSYUi24RvHCtFy64Ymm0BGGla6ymDoqmS+3SMigX7jV+C/+7MFg9d/718Q6L0GISlLfkPc8ha+iaS1FwRBgDExBSU9/fjnehO8ziJkuz+F17an48jaeAwNTC0I1NnZCcvwHbS31iEjxYC//PW3kJOTgy9+8Ys4fPgw7HZ7uD8VzbDSVQZDVyWRHro622YIT/wV/I3/CLGvcu4Heh5C7H8Isf/xCmTQJ0JIzgoN4sQMCLr5v5ykoFZ6KmKpfIEAfl/dgZ9eacbg+NRvIs8XOPH2s/lwmaWJh8ejYMc+O4r/c/EWns004T99sw2HDh3Cm2++GYYzDy9u1aMMhq5KIj10AUAwJEC/8U8RMJch0PwrQJy2Pbp5PQz5pyCO3n/8NnIf8I1AfHQX4qO7QU+mBxIzHwexFMqGxzczSFMcgUAgbL3PK/f68bdljWjun6rwd7ot+POD67Elwzznx6yxJeEvXnkSAPDMM8+gqKhIk3ONNF6vd9ljePQYQ1clkd7TlQiCAH3mQQgpOfDf+WnI9IIuKRtCkhtCkhvAHgCfjJV5BkNCWBy9D0z0ANKx4BeIS5NDWBzqg+gbC0voNvaO4G/LGnGtZQAA4LbE48/2r8PBDY5FV92iKEIUxagZAVQaK11lMHRVEg2VbjBdSi6Ewm/DX/8LiANTd4AJSTPXdRUEAYizQYizAanb5eOibwLi2IPHITzaBnG0HZjshzjZD3HgY6CtC4GOdnivjUGw5iy5PbEc/aMe/OzKPfy+pgMBEUiOM+DLT+XgtcI1MBmWFp7SRcBYHAdbDF5IUwZDVyXRFroAIBiSoC94G4GO8xAHb0NIK1zCx8ZDMK8DzI/X4hVFPzDWJVfFQstFQNeLgHdsWe2JpZj0+fHPlffxD9daMerxQy8IeK3QjT/ZmwNr4vKqNeki4GqtdHkhTRkMXZVEY+gCn7Qb3IcA9yEFnksPBLUnjF1roGtIhb7o30Dv74U42va4T7yI9oSQlL3g9IQoiiiu68bfXWxC59DU0prP5KXhzw6sQ27aym7HXe2hy0pXGQxdlURLT1dLOp1ualbXaIbO4gJSH6+vILcnpBAevQ9xbFp7QjJ9esKyEfmOJEx4/fj+mTv46P4ggKkt2P/84HrszlFmQZzV3F7g9uvKYeiqRBCEmFj0RknBI2Mz3jdXe2K8W+4TTwVy28zpCZ0R/+34f8eoT4/P/K+rSI0HvvqkFccLN8JgUm6xmdVc6XKFMeUwdFXE5R1DBY+MLYYg9XkTMwHsBiBNTzyCOHofww/b8I/V4/j4YTK+tzkAtzUB/++pyzCN34fRG4B4HfAusT0xn9Vc6XKFMeUwdFXESjfUfJXuUp7DZzTjD22p+OmVQTwcS4BOAP7powfoH/Xg+wdeB3rKl9aeWOT0BCtdVrpKYOiqKJK3YQ8HKaxWErpXm/vxN6Uzb2745uladDyawNcPPIWM9W998jqLbE8Ai5qeYOiy0lUCQ1dFbC+Ekird5ay/sNDNDVKOB8f5Qu2JpU5P+P02iL6xpX/iCxA9Q4Axaep8IxS36lEOQ1dFDN1Qy2kvKHlzg3wOcVYIcdYlT094hycR6KhFoPYBfKZditzcIY51wnfjPwKJGTBs+iqExMjcsJKVrnIYuioyGo0YHV14+cTVYikX0tS4uWE+i5meQMcdQFcPnTih2M0dgUd3AYjAWAd8H38f+nVvQZe+W/HPb6VY6SqHoasi9nRDjY2Nobm5GRMTE3M+JnjnBvnmhvw0fH3/OuSs8OaGpZrentCl9EHn9sK47Qj0uWZlbu4Yvf/4sQEP/PV/D3GoAbq81yHoIqeqZKWrHIauitheeKyxsRE///nPceHCBXz3u9/F1q1b4XK5kJGRIf/33iM//qa0ATc7hwAA6x3J+PqBdYrd3LBSgUBg6o69eCt0qVsUubkjMDhzq/dA1wUEhpth2PSnEBIiY581VrrKYeiqiKEL9PT04F9+90e0NDchOzsb3/nOd5CdnY2BgQF0dnbi9u3bGJ7w4nrrQ7QMB2BMsSHV4cQXDuzAG8/mw55mC/enIJtvTndFN3fMZrQNvo+/B/36fwWdfZfin8tScWRMOQxdFRmNRni93rAv2h0OIyMjKC0tRdmVD/Hb2h5Y1+3E+//hC3BZH7cIRiZ9+NmFuzh98SbG0vqQnDCInTYR+cmD6K+5gJ/UXEBcXJy8AaVUETscjrCsx7vUkbGFpicCg7cgdpyf+wn8E/Df+R8IpO6EYfPbKz39FeHNEcph6KrIZDJBFEX4fL5V88Xq9XpRXl6Oy5cvw+fz4TacSN37NHTGOPz9h2341tEC+AIB/KGmEz+9cg8Px7zQWdLx2ae24Wv7pnZu8Pl88kaSXV1d6OzsRFVVlVxt6fV6pKenhwSx36v+bxRSpbuSOd2Q6Qn/OPyYJ3Sl1x1qWPbrKYXbryuHoaui4JXGYj10RVFEdXU1PvjgAwwNDaGgoACP7AXou9EHKaLeqenExvQU/N+q9nl3bjAYDMjMzERmZqZ8LBAIYGBgICSI6+vrUVU1tY1QY+UDjOsTcDq9E5vzsuVecXJysmKfo1TpKhU8YvBFtOkMSRCsmyEkZ0NIf0qR11uJ1fA1rBWGroqCQzcpSdsr71pqbm5GcXExOjs74Xa7cfLkSYgpdpz6h4qQx4kA/mtJPYCl79yg0+lgt9tht9uxdevWqecTRQwPD6OrqwvnRkrQ1dmJ7s5OdDY/rgxTUlJCKmKXywWbzbas4FT6jjRxvCfkz0LyWgi2bRBsWyGk5EIQIufON66lqxyGroqkyiBWL6b19fXh3LlzuHv3LiwWC06ePImtW7fCL4r4k3+6AY9/9nncl7dl4N8f2rismxuCCYIAs9kMs9mMtPV98Dg34V9/5SmkxglyNSxVxk1NTXJoSn1iKYRdLtei+sRKL3ijyzgA0ZgMwbwOgnULBNPc+7SFGytd5TB0VSRVBrE2qzs6OoqysjJUVlbCaDTi0KFD2LNnDwyGqS+nX15vRe0nY1+zqWl/BJ2KrcH4+Hjk5OQgJydHPib1iYODuLKyUv63kfrEwUHscrlCqjulK12dtQCwFijyXGpjpaschq6KonX3iLn4fD5cu3YNly5dgtfrRVFREQ4cOBDSOmnoGcb/vNQ87/O0DIzht9UdeG3XzD3Y1DJfnzg4iO/cuYMbN24AmKpoU1NT5SCenJyEx+NZtQveMHSVwdBVUayEriiKqK2txfnz5zE4OIgNGzbg8OHDcDgcMx771V9Vwb+ItRV+8/EDTUN3NsF94m3bpm50kPrEUhB3dnbiwYMHqK2txcDAAGpqaqDX61FQUBDSorBarTF9ZZ/bryuHoauiWNiyp62tDWfPnkV7eztcLhe+8IUvIDc3d87HT/oe93FNeh0STHokmfRIMOqRaNIj0ahHgsmA5zbMDOxIENwn3rhxo3x8fHwcV69exejoKLKzszE4OIjGxka55RAfHz/jgp3dbg/LPLEaWOkqh6GromiudAcGBnDu3DnU1dUhJSUFJ06cwPbt2xf81fr8v92HcY8fyXEGGPSx82t4QkIC1qxZg6ysLLz44ovIzMyE1+uV54mlyji4T2wwGOR5YimInU5nVIYXL6Qph6GromgM3fHxcVy4cAEVFRXQ6/U4ePAgnnrqqUUHRZxBjzhDbFR3002/kGY0GuF2u+F2u0Me09/fHxLEdXV1IX3itLS0GdMTkT5SyAtpymHoqiiaRsb8fj+uX7+OixcvYmJiAoWFhTh48CBSUlLCfWoRYzHTCzqdDg6HAw6HI6RPPDQ0FBLEUp9YYjabZwRxJPWJWekqh6GrIr1eD71eH9E9XVEUUVdXh5KSEgwMDCA/Px9HjhyB0+kM96lFnOXO6QqCAIvFAovFMqNPHBzEnZ2daGhokF9H6hMHr8Rmt9s1n57g9uvKYuiqLJJXGnvw4AGKi4vR1taG9PR0fP7zn8e6desW/sBVSuk53YSEBOTm5oZcmJT6xMFBXFFRAZ/PB+Bxnzg4iNPT01UNRK4wpiyGrsoiMXQHBwdRUlKC2tpaJCcn4/jx4ygsLIyq+dPf13TgbF2X/Of+0am/42/98RbiPrnTLd+ejH/36fXQKbVWggZbsM/XJw4O4tu3b6OyslI+n7S0tJAgdrlcSEycf9eKxeIKY8pi6KoskkJ3YmICly5dwocffghBEPDss8/i6aefRlxcXLhPbcn+UNMx611vNzseH6u6P4iv7ctDokmZL/Nw7QYc3Cfevn07gMd94uAgbmtrw82bN+WPM5vNM4LYYrEs+YcGK11lMXRVJq2pG05+vx+VlZUoKyvD2NgYduzYgeeeew5mc+Te67+Qz+x0z3urMQC8sMWlWOACkbUFe3CfeNOmTfLxsbGxkJXYurq6UF9fL1fpCQkJs84Tz/c5caseZTF0VRbOSlcURdTX1+PcuXPo6+tDTk4Ojh49ioyMyNxxdile2OzEz8tb8GBwfNb36wTgS3tyFH1NLdoLK5WYmIi8vDzk5eXJx7xeL7q7u0OCeHqf2Ol0zpgnnn5zDytdZTB0VWYymTA8PKz563Z2duLs2bNoaWlBWloa3nzzTWzYsCGiA2MpDDodvvRUDr77/sw9xgDg2BYXsmzK9DQlkVTpLoXRaMSaNWuwZs3j264DgQD6+vpCgvjWrVshfWK73Q6XywWPx4Ompib5hw6tDENXZUajUdNKd2hoCOfPn0dNTQ0SEhJw7NgxFBUVxcztqMHmqnbVqHIBZXaOiBQ6nQ7p6elIT08P6RM/evQoJIhrampQVlaG1tZWNDY2Ij8/P8xnHv0YuirTahv2yclJXLlyBeXl5QgEAti7dy/27dsX04uUzFXtqlHlAsrvHBFpBEGA1WqF1WpFXl4eSktLodPpcPDgQeTm5mLfvn3hPsWYwNBVmdo93UAggKqqKpSWlmJkZARbt27FoUOHYLVaVXvNSDK92lWrygWit72wVA0NDXj33XcxODiIJ554AocOHYrpH95aY+iqTApdNXYEbmxsRHFxMXp6epCVlYU33ngjpG+3Gkyvdg+sd6hS5QLRcSFtJUZGRnDmzBnU1tbC4XDgS1/6ErKzs8N9WjGHoasyo9GIQCAAv98v76ywUt3d3SguLkZTUxNsNhtee+01FBQUxGwYLOSFzU78l3N3MekLqFblArFb6YqiiKqqKhQXF8Pr9eLgwYN4+umnFft6pVD8W1VZ8JY9K/0iHh4eRmlpKaqqqhAfH4+jR4/iU5/61Kr/5jDodPjNl3ejb9SDjU71FuiJpQtpkr6+Ppw+fRqtra3IycnBSy+9BLvdHu7Timmr+7tVA8HLOyYkJCzrOTweD8rLy3HlyhX4/X7s3r0b+/fvX/bzxSKXOQEus7p/H7F0Ic3n8+Hy5cu4dOkSTCYTXnnlFezcuTMmPrdIx9BV2UrW1BVFEdXV1Th//jyGh4dRUFCAw4cPIzU1VenTpEUIBAIxUeW2trbi9OnT6Ovrw7Zt23D06FEkJyeH+7RWDYauypa7pm5zczPOnj2Lrq4uuN1uvPrqq1i7dq0ap0iLpMbFUC2Nj4+jpKQElZWVsFqtXFUuTAR2pvUAAAeFSURBVBi6KlvqNuy9vb04d+4c6uvrYbFYcPLkSWzdujWqv9ljRbRWuqIo4tatWzhz5gzGxsawd+9eHDhwgLf1hglDV2WLbS+Mjo6irKwMlZWVMBqNOHToEPbs2bPqL5JFkmgM3cHBQbz77rtoaGhAZmYmTp06FRNrb0QzfkerbKHQ9fl8uHbtGi5dugSv14uioiIcOHAg4vfMWo2iqb0QCATw4Ycf4oMPPoAgCHj++efx5JNPRt0PjVjE0FXZXD1dURRRW1uLkpISPHr0CBs2bMDhw4fhcETm1uQUPZVuZ2cn3nnnHXR2dmLDhg148cUXYbFYwn1a9AmGrspm6+m2traiuLgY7e3tcLlcOHHiRMiWLRSZIr3S9Xg8KC0txbVr15CUlITPfvaz2Lx5c0Sf82rE0FVZcHuhv78fJSUlqKurg9lsxokTJ7Bjxw5+U0SJSK50g9dLKCoqwqFDhzjHHaEYuirT6/UYGxvDpUuXUFpaCoPBgIMHD2Lv3r1ciT/KRGLocr2E6MPQVZnH48E777yDhIQE7N+/HwcPHoTdbsfIyAisViur3CgSSe0FrpcQvfgvpDKj0YhTp04hOTkZycnJqKmpQVVVFYCprVUyMzND3qJ537JYFymVbvB6CWvXrsXx48e5XkIUYeiqTKfT4dvf/rb8Z5/Ph56eHnR0dMhvly9flu/rT0lJmRHEHB+LDOGudKevl/Dyyy+jsLAwYqpvWhyGrsYMBoMcphKv14uuri45hNvb20N2cLVarTOCmItKay+clS7XS4gdDN0IYDQakZWVhaysLPnY5OQkOjs7Q4L49u3b8vvT0tLkAHa73XC5XLytU2XhCF2ulxB7GLoRKi4uDjk5OcjJyZGPjY+Ph7QlWltbcfPmTQBTyw06HI6QIHY6nbywoiAt2wvB6yWMjo5yvYQYwu/IKJKQkID8/PyQHVlHRkZCquGGhgZ8/PHHAKbG1dLT0+UQzszMhMPhiMmdgbWgVaXL9RJiG0M3yiUnJ2PDhg3YsGEDgKkKaWhoKCSIb926hcrKSgBTPWWXyxUSxGlpaRFxVT7SqV3pcr2E1YGhG2MEQYDFYoHFYkFBQQGAqbB4+PChHMIdHR34+OOPcf36dQBTd81lZGSEBLHNZuNV8WnUrHSnr5dw7NixVbOj82rD0F0FBEFAamoqUlNTsXXrVgBTAdLf3x8SxBUVFSgvLwcAxMfHh4SwNEO8moNYjdD1eDwoKytDeXk510tYJRi6q5ROp4PD4YDD4cCOHTsAAH6/H729vSFBfOXKFXmGOCkpaUYQr6axJaXbC1wvYXVi6JJMr9fD5XLB5XJh165dAKYG8ru7u+UQ7ujoQGNjozxDbDabQ0I4MzMzZoMjEAgosl4G10tY3Ri6NC+DwQC32w232y0f83g8ITPEHR0dqKurk99vs9lCgjgjIwNxcXHhOH1FiaK4ovYC10sggKFLy2AymbB27dqQjTInJiZCQvjBgweora0FMNVTTktLCwlil8sVdausBQKBZbcXuF4CSRi6pIj4+Hjk5eUhLy9PPjY6OhoSxE1NTaiurgYw1VOWZoilN6fTGdEzxMu5kBa8XoLRaOR6CcTQJfUkJSVh/fr1WL9+vXwseIa4o6MDd+7cwY0bNwA87ikHB7HD4YiYOdWlXkjjegk0G4YuacpsNsNsNmPTpk0ApoJscHAwJIhrampQUVEBYGpdCmmGWHpLS0sLS6W42Ep3+noJp06dCvnBQ6sbQ5fCShAE2Gw22Gw2bNmyBcBUEEszxNJbZWUlrl27BmBqXYrgEHa73bBYLKoH8UIX0kRRxO3bt/H+++9zvQSaE0OXIo4gCLDb7bDb7di+fTuAqSpTmiGW3q5duwa/3w9g5oLwbrcbKSkpip7XfBfSBgcH8d5776G+vp7rJdC8GLoUFXQ6HZxOJ5xOJwoLCwHMXBC+vb1d1QXhZ2svTF8v4ejRo9i9e3fE9KEp8jB0KWqtdEF4t9uNjIyMRS8IP/1CWmdnJ06fPo2Ojg6ul0CLxtClmKLmgvBSpcv1EmglBKkCmMO87ySKVsELwku3OA8NDQEIXRBeuqHD6XTiRz/6ESwWC8bGxrheAi1kzp/ADF2iT0gLwgevMzE6OgpgqrVw5swZWK1WvPzyy3jppZdC7sgjmoahS7RUwQvCP3jwAD/4wQ9QVFSEH/7wh1wvgRbC0CVaqXBvwU5RZc4vFM61EC0SA5eUwNAlItIQQ5eISEMMXSIiDTF0iYg0xNAlItIQQ5eISEMMXSIiDTF0iYg0xNAlItIQQ5eISEMMXSIiDTF0iYg0xNAlItIQQ5eISEMMXSIiDTF0iYg0xNAlItIQQ5eISEMMXSIiDTF0iYg0xNAlItIQQ5eISEMMXSIiDTF0iYg0xNAlItIQQ5eISEMMXSIiDTF0iYg0xNAlItIQQ5eISEMMXSIiDTF0iYg0xNAlItIQQ5eISEMMXSIiDTF0iYg0xNAlItIQQ5eISEMMXSIiDTF0iYg0xNAlItKQYYH3C5qcBRHRKsFKl4hIQwxdIiINMXSJiDTE0CUi0hBDl4hIQwxdIiIN/X+tAN1ae9vZCgAAAABJRU5ErkJggg==\n", "text/plain": [ "<Figure size 432x288 with 1 Axes>" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "sten = ((0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1),\n", " (-1, 0, 0), (0, -1, 0), (0, 0, -1))\n", "\n", "plot(sten)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.7" } }, "nbformat": 4, "nbformat_minor": 4 }