from enum import Enum from itertools import chain from typing import Tuple, Sequence, Optional, List import numpy as np import sympy as sp from sympy.core.cache import cacheit from sympy.tensor import IndexedBase from pystencils.assignment import Assignment from pystencils.alignedarray import aligned_empty from pystencils.data_types import TypedSymbol, create_type, create_composite_type_from_string, StructType from pystencils.sympyextensions import is_integer_sequence class FieldType(Enum): # generic fields GENERIC = 0 # index fields are currently only used for boundary handling # the coordinates are not the loop counters in that case, but are read from this index field INDEXED = 1 # communication buffer, used for (un)packing data in communication. BUFFER = 2 @staticmethod def is_generic(field): assert isinstance(field, Field) return field.fieldType == FieldType.GENERIC @staticmethod def is_indexed(field): assert isinstance(field, Field) return field.fieldType == FieldType.INDEXED @staticmethod def is_buffer(field): assert isinstance(field, Field) return field.fieldType == FieldType.BUFFER class Field(object): """ With fields one can formulate stencil-like update rules on structured grids. This Field class knows about the dimension, memory layout (strides) and optionally about the size of an array. Creating Fields: To create a field use one of the static create* members. There are two options: 1. create a kernel with fixed loop sizes i.e. the shape of the array is already known. This is usually the case if just-in-time compilation directly from Python is done. (see :func:`Field.createFromNumpyArray`) 2. create a more general kernel that works for variable array sizes. This can be used to create kernels beforehand for a library. (see :func:`Field.create_generic`) Dimensions: A field has spatial and index dimensions, where the spatial dimensions come first. The interpretation is that the field has multiple cells in (usually) two or three dimensional space which are looped over. Additionally N values are stored per cell. In this case spatial_dimensions is two or three, and index_dimensions equals N. If you want to store a matrix on each point in a two dimensional grid, there are four dimensions, two spatial and two index dimensions: ``len(arr.shape) == spatialDims + indexDims`` Indexing: When accessing (indexing) a field the result is a FieldAccess which is derived from sympy Symbol. First specify the spatial offsets in [], then in case indexDimension>0 the indices in () e.g. ``f[-1,0,0](7)`` Example without index dimensions: >>> a = np.zeros([10, 10]) >>> f = Field.create_from_numpy_array("f", a, index_dimensions=0) >>> jacobi = ( f[-1,0] + f[1,0] + f[0,-1] + f[0,1] ) / 4 Example with index dimensions: LBM D2Q9 stream pull >>> stencil = np.array([[0,0], [0,1], [0,-1]]) >>> src = Field.create_generic("src", spatial_dimensions=2, index_dimensions=1) >>> dst = Field.create_generic("dst", spatial_dimensions=2, index_dimensions=1) >>> for i, offset in enumerate(stencil): ... Assignment(dst[0,0](i), src[-offset](i)) Assignment(dst_C^0, src_C^0) Assignment(dst_C^1, src_S^1) Assignment(dst_C^2, src_N^2) """ @staticmethod def create_generic(field_name, spatial_dimensions, dtype=np.float64, index_dimensions=0, layout='numpy', index_shape=None, field_type=FieldType.GENERIC) -> 'Field': """ Creates a generic field where the field size is not fixed i.e. can be called with arrays of different sizes Args: field_name: symbolic name for the field dtype: numpy data type of the array the kernel is called with later spatial_dimensions: see documentation of Field index_dimensions: see documentation of Field layout: tuple specifying the loop ordering of the spatial dimensions e.g. (2, 1, 0 ) means that the outer loop loops over dimension 2, the second outer over dimension 1, and the inner loop over dimension 0. Also allowed: the strings 'numpy' (0,1,..d) or 'reverseNumpy' (d, ..., 1, 0) index_shape: optional shape of the index dimensions i.e. maximum values allowed for each index dimension, has to be a list or tuple field_type: besides the normal GENERIC fields, there are INDEXED fields that store indices of the domain that should be iterated over, and BUFFER fields that are used to generate communication packing/unpacking kernels """ if isinstance(layout, str): layout = spatial_layout_string_to_tuple(layout, dim=spatial_dimensions) shape_symbol = IndexedBase(TypedSymbol(Field.SHAPE_PREFIX + field_name, Field.SHAPE_DTYPE), shape=(1,)) stride_symbol = IndexedBase(TypedSymbol(Field.STRIDE_PREFIX + field_name, Field.STRIDE_DTYPE), shape=(1,)) total_dimensions = spatial_dimensions + index_dimensions if index_shape is None or len(index_shape) == 0: shape = tuple([shape_symbol[i] for i in range(total_dimensions)]) else: shape = tuple([shape_symbol[i] for i in range(spatial_dimensions)] + list(index_shape)) strides = tuple([stride_symbol[i] for i in range(total_dimensions)]) np_data_type = np.dtype(dtype) if np_data_type.fields is not None: if index_dimensions != 0: raise ValueError("Structured arrays/fields are not allowed to have an index dimension") shape += (1,) strides += (1,) return Field(field_name, field_type, dtype, layout, shape, strides) @staticmethod def create_from_numpy_array(field_name: str, array: np.ndarray, index_dimensions: int = 0) -> 'Field': """Creates a field based on the layout, data type, and shape of a given numpy array. Kernels created for these kind of fields can only be called with arrays of the same layout, shape and type. Args: field_name: symbolic name for the field array: numpy array index_dimensions: see documentation of Field """ spatial_dimensions = len(array.shape) - index_dimensions if spatial_dimensions < 1: raise ValueError("Too many index dimensions. At least one spatial dimension required") full_layout = get_layout_of_array(array) spatial_layout = tuple([i for i in full_layout if i < spatial_dimensions]) assert len(spatial_layout) == spatial_dimensions strides = tuple([s // np.dtype(array.dtype).itemsize for s in array.strides]) shape = tuple(int(s) for s in array.shape) numpy_dtype = np.dtype(array.dtype) if numpy_dtype.fields is not None: if index_dimensions != 0: raise ValueError("Structured arrays/fields are not allowed to have an index dimension") shape += (1,) strides += (1,) return Field(field_name, FieldType.GENERIC, array.dtype, spatial_layout, shape, strides) @staticmethod def create_fixed_size(field_name: str, shape: Tuple[int, ...], index_dimensions: int = 0, dtype=np.float64, layout: str = 'numpy', strides: Optional[Sequence[int]]=None) -> 'Field': """ Creates a field with fixed sizes i.e. can be called only with arrays of the same size and layout Args: field_name: symbolic name for the field shape: overall shape of the array index_dimensions: how many of the trailing dimensions are interpreted as index (as opposed to spatial) dtype: numpy data type of the array the kernel is called with later layout: full layout of array, not only spatial dimensions strides: strides in bytes or None to automatically compute them from shape (assuming no padding) """ spatial_dimensions = len(shape) - index_dimensions assert spatial_dimensions >= 1 if isinstance(layout, str): layout = layout_string_to_tuple(layout, spatial_dimensions + index_dimensions) shape = tuple(int(s) for s in shape) if strides is None: strides = compute_strides(shape, layout) else: assert len(strides) == len(shape) strides = tuple([s // np.dtype(dtype).itemsize for s in strides]) numpy_dtype = np.dtype(dtype) if numpy_dtype.fields is not None: if index_dimensions != 0: raise ValueError("Structured arrays/fields are not allowed to have an index dimension") shape += (1,) strides += (1,) spatial_layout = list(layout) for i in range(spatial_dimensions, len(layout)): spatial_layout.remove(i) return Field(field_name, FieldType.GENERIC, dtype, tuple(spatial_layout), shape, strides) def __init__(self, field_name, field_type, dtype, layout, shape, strides): """Do not use directly. Use static create* methods""" self._fieldName = field_name assert isinstance(field_type, FieldType) self.fieldType = field_type self._dtype = create_type(dtype) self._layout = normalize_layout(layout) self.shape = shape self.strides = strides self.latex_name: Optional[str] = None def new_field_with_different_name(self, new_name): return Field(new_name, self.fieldType, self._dtype, self._layout, self.shape, self.strides) @property def spatial_dimensions(self) -> int: return len(self._layout) @property def index_dimensions(self) -> int: return len(self.shape) - len(self._layout) @property def layout(self): return self._layout @property def name(self) -> str: return self._fieldName @property def spatial_shape(self) -> Tuple[int, ...]: return self.shape[:self.spatial_dimensions] @property def has_fixed_shape(self): return is_integer_sequence(self.shape) @property def index_shape(self): return self.shape[self.spatial_dimensions:] @property def has_fixed_index_shape(self): return is_integer_sequence(self.index_shape) @property def spatial_strides(self): return self.strides[:self.spatial_dimensions] @property def index_strides(self): return self.strides[self.spatial_dimensions:] @property def dtype(self): return self._dtype def __repr__(self): return self._fieldName def neighbor(self, coord_id, offset): offset_list = [0] * self.spatial_dimensions offset_list[coord_id] = offset return Field.Access(self, tuple(offset_list)) def neighbors(self, stencil): return [self.__getitem__(s) for s in stencil] @property def center_vector(self): index_shape = self.index_shape if len(index_shape) == 0: return self.center elif len(index_shape) == 1: return sp.Matrix([self(i) for i in range(index_shape[0])]) elif len(index_shape) == 2: def cb(*args): r = self.__call__(*args) return r return sp.Matrix(*index_shape, cb) @property def center(self): center = tuple([0] * self.spatial_dimensions) return Field.Access(self, center) def __getitem__(self, offset): if type(offset) is np.ndarray: offset = tuple(offset) if type(offset) is str: offset = tuple(direction_string_to_offset(offset, self.spatial_dimensions)) if type(offset) is not tuple: offset = (offset,) if len(offset) != self.spatial_dimensions: raise ValueError("Wrong number of spatial indices: " "Got %d, expected %d" % (len(offset), self.spatial_dimensions)) return Field.Access(self, offset) def __call__(self, *args, **kwargs): center = tuple([0] * self.spatial_dimensions) return Field.Access(self, center)(*args, **kwargs) def __hash__(self): return hash((self._layout, self.shape, self.strides, self._dtype, self.fieldType, self._fieldName)) def __eq__(self, other): self_tuple = (self.shape, self.strides, self.name, self.dtype, self.fieldType) other_tuple = (other.shape, other.strides, other.name, other.dtype, other.fieldType) return self_tuple == other_tuple PREFIX = "f" STRIDE_PREFIX = PREFIX + "stride_" SHAPE_PREFIX = PREFIX + "shape_" STRIDE_DTYPE = create_composite_type_from_string("const int *") SHAPE_DTYPE = create_composite_type_from_string("const int *") DATA_PREFIX = PREFIX + "d_" # noinspection PyAttributeOutsideInit,PyUnresolvedReferences class Access(sp.Symbol): def __new__(cls, name, *args, **kwargs): obj = Field.Access.__xnew_cached_(cls, name, *args, **kwargs) return obj def __new_stage2__(self, field, offsets=(0, 0, 0), idx=None): field_name = field.name offsets_and_index = chain(offsets, idx) if idx is not None else offsets constant_offsets = not any([isinstance(o, sp.Basic) and not o.is_Integer for o in offsets_and_index]) if not idx: idx = tuple([0] * field.index_dimensions) if constant_offsets: offset_name = offset_to_direction_string(offsets) if field.index_dimensions == 0: superscript = None elif field.index_dimensions == 1: superscript = str(idx[0]) else: idx_str = ",".join([str(e) for e in idx]) superscript = idx_str if field.has_fixed_index_shape and not isinstance(field.dtype, StructType): for i, bound in zip(idx, field.index_shape): if i >= bound: raise ValueError("Field index out of bounds") else: offset_name = "%0.10X" % (abs(hash(tuple(offsets_and_index)))) superscript = None symbol_name = "%s_%s" % (field_name, offset_name) if superscript is not None: symbol_name += "^" + superscript obj = super(Field.Access, self).__xnew__(self, symbol_name) obj._field = field obj._offsets = [] for o in offsets: if isinstance(o, sp.Basic): obj._offsets.append(o) else: obj._offsets.append(int(o)) obj._offsetName = offset_name obj._superscript = superscript obj._index = idx return obj def __getnewargs__(self): return self.field, self.offsets, self.index # noinspection SpellCheckingInspection __xnew__ = staticmethod(__new_stage2__) # noinspection SpellCheckingInspection __xnew_cached_ = staticmethod(cacheit(__new_stage2__)) def __call__(self, *idx): if self._index != tuple([0]*self.field.index_dimensions): raise ValueError("Indexing an already indexed Field.Access") idx = tuple(idx) if self.field.index_dimensions == 0 and idx == (0,): idx = () if len(idx) != self.field.index_dimensions: raise ValueError("Wrong number of indices: " "Got %d, expected %d" % (len(idx), self.field.index_dimensions)) return Field.Access(self.field, self._offsets, idx) def __getitem__(self, *idx): return self.__call__(*idx) def __iter__(self): """This is necessary to work with parts of sympy that test if an object is iterable (e.g. simplify). The __getitem__ would make it iterable""" raise TypeError("Field access is not iterable") @property def field(self): return self._field @property def offsets(self): return self._offsets @offsets.setter def offsets(self, value): self._offsets = value @property def required_ghost_layers(self): return int(np.max(np.abs(self._offsets))) @property def nr_of_coordinates(self): return len(self._offsets) @property def offset_name(self) -> str: return self._offsetName @property def index(self): return self._index def get_neighbor(self, *offsets) -> 'Field.Access': return Field.Access(self.field, offsets, self.index) def neighbor(self, coord_id: int, offset: Sequence[int]) -> 'Field.Access': offset_list = list(self.offsets) offset_list[coord_id] += offset return Field.Access(self.field, tuple(offset_list), self.index) def get_shifted(self, *shift)-> 'Field.Access': return Field.Access(self.field, tuple(a + b for a, b in zip(shift, self.offsets)), self.index) def _hashable_content(self): super_class_contents = list(super(Field.Access, self)._hashable_content()) t = tuple(super_class_contents + [hash(self._field), self._index] + self._offsets) return t def _latex(self, _): n = self._field.latex_name if self._field.latex_name else self._field.name if self._superscript: return "{{%s}_{%s}^{%s}}" % (n, self._offsetName, self._superscript) else: return "{{%s}_{%s}}" % (n, self._offsetName) def get_layout_from_strides(strides: Sequence[int], index_dimension_ids: Optional[List[int]] = None): index_dimension_ids = [] if index_dimension_ids is None else index_dimension_ids coordinates = list(range(len(strides))) relevant_strides = [stride for i, stride in enumerate(strides) if i not in index_dimension_ids] result = [x for (y, x) in sorted(zip(relevant_strides, coordinates), key=lambda pair: pair[0], reverse=True)] return normalize_layout(result) def get_layout_of_array(arr: np.ndarray, index_dimension_ids: Optional[List[int]] = None): """ Returns a list indicating the memory layout (linearization order) of the numpy array. Examples: >>> get_layout_of_array(np.zeros([3,3,3])) (0, 1, 2) In this example the loop over the zeroth coordinate should be the outermost loop, followed by the first and second. Elements arr[x,y,0] and arr[x,y,1] are adjacent in memory. Normally constructed numpy arrays have this order, however by stride tricks or other frameworks, arrays with different memory layout can be created. The index_dimension_ids parameter leaves specifies which coordinates should not be """ index_dimension_ids = [] if index_dimension_ids is None else index_dimension_ids return get_layout_from_strides(arr.strides, index_dimension_ids) def create_numpy_array_with_layout(shape, layout, alignment=False, byte_offset=0, **kwargs): """Creates numpy array with given memory layout. Args: shape: shape of the resulting array layout: layout as tuple, where the coordinates are ordered from slow to fast alignment: number of bytes to align the beginning and the innermost coordinate to, or False for no alignment byte_offset: only used when alignment is specified, align not beginning but address at this offset mostly used to align first inner cell, not ghost cells Example: >>> res = create_numpy_array_with_layout(shape=(2, 3, 4, 5), layout=(3, 2, 0, 1)) >>> res.shape (2, 3, 4, 5) >>> get_layout_of_array(res) (3, 2, 0, 1) """ assert set(layout) == set(range(len(shape))), "Wrong layout descriptor" cur_layout = list(range(len(shape))) swaps = [] for i in range(len(layout)): if cur_layout[i] != layout[i]: index_to_swap_with = cur_layout.index(layout[i]) swaps.append((i, index_to_swap_with)) cur_layout[i], cur_layout[index_to_swap_with] = cur_layout[index_to_swap_with], cur_layout[i] assert tuple(cur_layout) == tuple(layout) shape = list(shape) for a, b in swaps: shape[a], shape[b] = shape[b], shape[a] if not alignment: res = np.empty(shape, order='c', **kwargs) else: if alignment is True: alignment = 8 * 4 res = aligned_empty(shape, alignment, byte_offset=byte_offset, **kwargs) for a, b in reversed(swaps): res = res.swapaxes(a, b) return res def spatial_layout_string_to_tuple(layout_str: str, dim: int) -> Tuple[int, ...]: if layout_str in ('fzyx', 'zyxf'): assert dim <= 3 return tuple(reversed(range(dim))) if layout_str in ('fzyx', 'f', 'reverseNumpy', 'SoA'): return tuple(reversed(range(dim))) elif layout_str in ('c', 'numpy', 'AoS'): return tuple(range(dim)) raise ValueError("Unknown layout descriptor " + layout_str) def layout_string_to_tuple(layout_str, dim): layout_str = layout_str.lower() if layout_str == 'fzyx' or layout_str == 'soa': assert dim <= 4 return tuple(reversed(range(dim))) elif layout_str == 'zyxf' or layout_str == 'aos': assert dim <= 4 return tuple(reversed(range(dim - 1))) + (dim-1,) elif layout_str == 'f' or layout_str == 'reversenumpy': return tuple(reversed(range(dim))) elif layout_str == 'c' or layout_str == 'numpy': return tuple(range(dim)) raise ValueError("Unknown layout descriptor " + layout_str) def normalize_layout(layout): """Takes a layout tuple and subtracts the minimum from all entries""" min_entry = min(layout) return tuple(i - min_entry for i in layout) def compute_strides(shape, layout): """ Computes strides assuming no padding exists Args: shape: shape (size) of array layout: layout specification as tuple Returns: strides in elements, not in bytes """ dim = len(shape) assert len(layout) == dim assert len(set(layout)) == dim strides = [0] * dim product = 1 for j in reversed(layout): strides[j] = product product *= shape[j] return tuple(strides) def offset_component_to_direction_string(coordinate_id: int, value: int) -> str: """Translates numerical offset to string notation. x offsets are labeled with east 'E' and 'W', y offsets with north 'N' and 'S' and z offsets with top 'T' and bottom 'B' If the absolute value of the offset is bigger than 1, this number is prefixed. Args: coordinate_id: integer 0, 1 or 2 standing for x,y and z value: integer offset Examples: >>> offset_component_to_direction_string(0, 1) 'E' >>> offset_component_to_direction_string(1, 2) '2N' """ name_components = (('W', 'E'), # west, east ('S', 'N'), # south, north ('B', 'T'), # bottom, top ) if value == 0: result = "" elif value < 0: result = name_components[coordinate_id][0] else: result = name_components[coordinate_id][1] if abs(value) > 1: result = "%d%s" % (abs(value), result) return result def offset_to_direction_string(offsets: Sequence[int]) -> str: """ Translates numerical offset to string notation. For details see :func:`offset_component_to_direction_string` Args: offsets: 3-tuple with x,y,z offset Examples: >>> offset_to_direction_string([1, -1, 0]) 'SE' >>> offset_to_direction_string(([-3, 0, -2])) '2B3W' """ names = ["", "", ""] for i in range(len(offsets)): names[i] = offset_component_to_direction_string(i, offsets[i]) name = "".join(reversed(names)) if name == "": name = "C" return name def direction_string_to_offset(direction: str, dim: int = 3): """ Reverse mapping of :func:`offsetToDirectionString` Args: direction: string representation of offset dim: dimension of offset, i.e the length of the returned list Examples: >>> direction_string_to_offset('NW', dim=3) array([-1, 1, 0]) >>> direction_string_to_offset('NW', dim=2) array([-1, 1]) >>> direction_string_to_offset(offset_to_direction_string((3,-2,1))) array([ 3, -2, 1]) """ offset_dict = { 'C': np.array([0, 0, 0]), 'W': np.array([-1, 0, 0]), 'E': np.array([1, 0, 0]), 'S': np.array([0, -1, 0]), 'N': np.array([0, 1, 0]), 'B': np.array([0, 0, -1]), 'T': np.array([0, 0, 1]), } offset = np.array([0, 0, 0]) while len(direction) > 0: factor = 1 first_non_digit = 0 while direction[first_non_digit].isdigit(): first_non_digit += 1 if first_non_digit > 0: factor = int(direction[:first_non_digit]) direction = direction[first_non_digit:] cur_offset = offset_dict[direction[0]] offset += factor * cur_offset direction = direction[1:] return offset[:dim]