import sympy as sp import warnings from typing import Union, Container from pystencils.backends.simd_instruction_sets import get_vector_instruction_set from pystencils.fast_approximation import fast_division, fast_sqrt, fast_inv_sqrt from pystencils.integer_functions import modulo_floor, modulo_ceil from pystencils.sympyextensions import fast_subs from pystencils.data_types import TypedSymbol, VectorType, get_type_of_expression, vector_memory_access, cast_func, \ collate_types, PointerType import pystencils.astnodes as ast from pystencils.transformations import cut_loop, filtered_tree_iteration, replace_inner_stride_with_one from pystencils.field import Field def vectorize(kernel_ast: ast.KernelFunction, instruction_set: str = 'avx', assume_aligned: bool = False, nontemporal: Union[bool, Container[Union[str, Field]]] = False, assume_inner_stride_one: bool = False, assume_sufficient_line_padding: bool = True): """Explicit vectorization using SIMD vectorization via intrinsics. Args: kernel_ast: abstract syntax tree (KernelFunction node) instruction_set: one of the supported vector instruction sets, currently ('sse', 'avx' and 'avx512') assume_aligned: assume that the first inner cell of each line is aligned. If false, only unaligned-loads are used. If true, some of the loads are assumed to be from aligned memory addresses. For example if x is the fastest coordinate, the access to center can be fetched via an aligned-load instruction, for the west or east accesses potentially slower unaligend-load instructions have to be used. nontemporal: a container of fields or field names for which nontemporal (streaming) stores are used. If true, nontemporal access instructions are used for all fields. assume_inner_stride_one: kernels with non-constant inner loop bound and strides can not be vectorized since the inner loop stride is a runtime variable and thus might not be always 1. If this parameter is set to true, the inner stride is assumed to be always one. This has to be ensured at runtime! assume_sufficient_line_padding: if True and assume_inner_stride_one, no tail loop is created but loop is extended by at most (vector_width-1) elements assumes that at the end of each line there is enough padding with dummy data depending on the access pattern there might be additional padding required at the end of the array """ if instruction_set is None: return all_fields = kernel_ast.fields_accessed if nontemporal is None or nontemporal is False: nontemporal = {} elif nontemporal is True: nontemporal = all_fields if assume_inner_stride_one: replace_inner_stride_with_one(kernel_ast) field_float_dtypes = set(f.dtype for f in all_fields if f.dtype.is_float()) if len(field_float_dtypes) != 1: raise NotImplementedError("Cannot vectorize kernels that contain accesses " "to differently typed floating point fields") float_size = field_float_dtypes.pop().numpy_dtype.itemsize assert float_size in (8, 4) vector_is = get_vector_instruction_set('double' if float_size == 8 else 'float', instruction_set=instruction_set) vector_width = vector_is['width'] kernel_ast.instruction_set = vector_is vectorize_inner_loops_and_adapt_load_stores(kernel_ast, vector_width, assume_aligned, nontemporal, assume_sufficient_line_padding) insert_vector_casts(kernel_ast) def vectorize_inner_loops_and_adapt_load_stores(ast_node, vector_width, assume_aligned, nontemporal_fields, assume_sufficient_line_padding): """Goes over all innermost loops, changes increment to vector width and replaces field accesses by vector type.""" all_loops = filtered_tree_iteration(ast_node, ast.LoopOverCoordinate, stop_type=ast.SympyAssignment) inner_loops = [n for n in all_loops if n.is_innermost_loop] zero_loop_counters = {l.loop_counter_symbol: 0 for l in all_loops} for loop_node in inner_loops: loop_range = loop_node.stop - loop_node.start # cut off loop tail, that is not a multiple of four if assume_aligned and assume_sufficient_line_padding: loop_range = loop_node.stop - loop_node.start new_stop = loop_node.start + modulo_ceil(loop_range, vector_width) loop_node.stop = new_stop else: cutting_point = modulo_floor(loop_range, vector_width) + loop_node.start loop_nodes = cut_loop(loop_node, [cutting_point]) assert len(loop_nodes) in (1, 2) # 2 for main and tail loop, 1 if loop range divisible by vector width loop_node = loop_nodes[0] # Find all array accesses (indexed) that depend on the loop counter as offset loop_counter_symbol = ast.LoopOverCoordinate.get_loop_counter_symbol(loop_node.coordinate_to_loop_over) substitutions = {} successful = True for indexed in loop_node.atoms(sp.Indexed): base, index = indexed.args if loop_counter_symbol in index.atoms(sp.Symbol): loop_counter_is_offset = loop_counter_symbol not in (index - loop_counter_symbol).atoms() aligned_access = (index - loop_counter_symbol).subs(zero_loop_counters) == 0 if not loop_counter_is_offset: successful = False break typed_symbol = base.label assert type(typed_symbol.dtype) is PointerType, \ "Type of access is {}, {}".format(typed_symbol.dtype, indexed) vec_type = VectorType(typed_symbol.dtype.base_type, vector_width) use_aligned_access = aligned_access and assume_aligned nontemporal = False if hasattr(indexed, 'field'): nontemporal = (indexed.field in nontemporal_fields) or (indexed.field.name in nontemporal_fields) substitutions[indexed] = vector_memory_access(indexed, vec_type, use_aligned_access, nontemporal) if not successful: warnings.warn("Could not vectorize loop because of non-consecutive memory access") continue loop_node.step = vector_width loop_node.subs(substitutions) def insert_vector_casts(ast_node): """Inserts necessary casts from scalar values to vector values.""" handled_functions = (sp.Add, sp.Mul, fast_division, fast_sqrt, fast_inv_sqrt) def visit_expr(expr): if isinstance(expr, cast_func) or isinstance(expr, vector_memory_access): return expr elif expr.func in handled_functions or isinstance(expr, sp.Rel) or isinstance(expr, sp.boolalg.BooleanFunction): new_args = [visit_expr(a) for a in expr.args] arg_types = [get_type_of_expression(a) for a in new_args] if not any(type(t) is VectorType for t in arg_types): return expr else: target_type = collate_types(arg_types) casted_args = [cast_func(a, target_type) if t != target_type else a for a, t in zip(new_args, arg_types)] return expr.func(*casted_args) elif expr.func is sp.Pow: new_arg = visit_expr(expr.args[0]) return expr.func(new_arg, expr.args[1]) elif expr.func == sp.Piecewise: new_results = [visit_expr(a[0]) for a in expr.args] new_conditions = [visit_expr(a[1]) for a in expr.args] types_of_results = [get_type_of_expression(a) for a in new_results] types_of_conditions = [get_type_of_expression(a) for a in new_conditions] result_target_type = get_type_of_expression(expr) condition_target_type = collate_types(types_of_conditions) if type(condition_target_type) is VectorType and type(result_target_type) is not VectorType: result_target_type = VectorType(result_target_type, width=condition_target_type.width) if type(condition_target_type) is not VectorType and type(result_target_type) is VectorType: condition_target_type = VectorType(condition_target_type, width=result_target_type.width) casted_results = [cast_func(a, result_target_type) if t != result_target_type else a for a, t in zip(new_results, types_of_results)] casted_conditions = [cast_func(a, condition_target_type) if t != condition_target_type and a is not True else a for a, t in zip(new_conditions, types_of_conditions)] return sp.Piecewise(*[(r, c) for r, c in zip(casted_results, casted_conditions)]) else: return expr def visit_node(node, substitution_dict): substitution_dict = substitution_dict.copy() for arg in node.args: if isinstance(arg, ast.SympyAssignment): assignment = arg subs_expr = fast_subs(assignment.rhs, substitution_dict, skip=lambda e: isinstance(e, ast.ResolvedFieldAccess)) assignment.rhs = visit_expr(subs_expr) rhs_type = get_type_of_expression(assignment.rhs) if isinstance(assignment.lhs, TypedSymbol): lhs_type = assignment.lhs.dtype if type(rhs_type) is VectorType and type(lhs_type) is not VectorType: new_lhs_type = VectorType(lhs_type, rhs_type.width) new_lhs = TypedSymbol(assignment.lhs.name, new_lhs_type) substitution_dict[assignment.lhs] = new_lhs assignment.lhs = new_lhs elif isinstance(assignment.lhs.func, cast_func): lhs_type = assignment.lhs.args[1] if type(lhs_type) is VectorType and type(rhs_type) is not VectorType: assignment.rhs = cast_func(assignment.rhs, lhs_type) else: visit_node(arg, substitution_dict) visit_node(ast_node, {})