from types import MappingProxyType import sympy as sp from pystencils.assignment import Assignment from pystencils.astnodes import LoopOverCoordinate, Conditional, Block, SympyAssignment from pystencils.assignment_collection import AssignmentCollection from pystencils.gpucuda.indexing import indexing_creator_from_params from pystencils.transformations import remove_conditionals_in_staggered_kernel def create_kernel(equations, target='cpu', data_type="double", iteration_slice=None, ghost_layers=None, cpu_openmp=False, cpu_vectorize_info=None, gpu_indexing='block', gpu_indexing_params=MappingProxyType({})): """ Creates abstract syntax tree (AST) of kernel, using a list of update equations. :param equations: either be a plain list of equations or a AssignmentCollection object :param target: 'cpu', 'llvm' or 'gpu' :param data_type: data type used for all untyped symbols (i.e. non-fields), can also be a dict from symbol name to type :param iteration_slice: rectangular subset to iterate over, if not specified the complete non-ghost layer \ part of the field is iterated over :param ghost_layers: if left to default, the number of necessary ghost layers is determined automatically a single integer specifies the ghost layer count at all borders, can also be a sequence of pairs [(x_lower_gl, x_upper_gl), .... ] CPU specific Parameters: :param cpu_openmp: True or number of threads for OpenMP parallelization, False for no OpenMP :param cpu_vectorize_info: pair of instruction set name ('sse, 'avx', 'avx512') and data type ('float', 'double') GPU specific Parameters :param gpu_indexing: either 'block' or 'line' , or custom indexing class (see gpucuda/indexing.py) :param gpu_indexing_params: dict with indexing parameters (constructor parameters of indexing class) e.g. for 'block' one can specify {'block_size': (20, 20, 10) } :return: abstract syntax tree object, that can either be printed as source code or can be compiled with through its compile() function """ # ---- Normalizing parameters split_groups = () if isinstance(equations, AssignmentCollection): if 'split_groups' in equations.simplification_hints: split_groups = equations.simplification_hints['split_groups'] equations = equations.all_assignments # ---- Creating ast if target == 'cpu': from pystencils.cpu import create_kernel from pystencils.cpu import add_openmp ast = create_kernel(equations, type_info=data_type, split_groups=split_groups, iteration_slice=iteration_slice, ghost_layers=ghost_layers) if cpu_openmp: add_openmp(ast, num_threads=cpu_openmp) if cpu_vectorize_info: import pystencils.backends.simd_instruction_sets as vec from pystencils.vectorization import vectorize vec_params = cpu_vectorize_info vec.selected_instruction_set = vec.x86_vector_instruction_set(instruction_set=vec_params[0], data_type=vec_params[1]) vectorize(ast) return ast elif target == 'llvm': from pystencils.llvm import create_kernel ast = create_kernel(equations, type_info=data_type, split_groups=split_groups, iteration_slice=iteration_slice, ghost_layers=ghost_layers) return ast elif target == 'gpu': from pystencils.gpucuda import create_cuda_kernel ast = create_cuda_kernel(equations, type_info=data_type, indexing_creator=indexing_creator_from_params(gpu_indexing, gpu_indexing_params), iteration_slice=iteration_slice, ghost_layers=ghost_layers) return ast else: raise ValueError("Unknown target %s. Has to be one of 'cpu', 'gpu' or 'llvm' " % (target,)) def create_indexed_kernel(assignments, index_fields, target='cpu', data_type="double", coordinate_names=('x', 'y', 'z'), cpu_openmp=True, gpu_indexing='block', gpu_indexing_params=MappingProxyType({})): """ Similar to :func:`create_kernel`, but here not all cells of a field are updated but only cells with coordinates which are stored in an index field. This traversal method can e.g. be used for boundary handling. The coordinates are stored in a separated index_field, which is a one dimensional array with struct data type. This struct has to contain fields named 'x', 'y' and for 3D fields ('z'). These names are configurable with the 'coordinate_names' parameter. The struct can have also other fields that can be read and written in the kernel, for example boundary parameters. index_fields: list of index fields, i.e. 1D fields with struct data type coordinate_names: name of the coordinate fields in the struct data type """ if isinstance(assignments, AssignmentCollection): assignments = assignments.all_assignments if target == 'cpu': from pystencils.cpu import create_indexed_kernel from pystencils.cpu import add_openmp ast = create_indexed_kernel(assignments, index_fields=index_fields, type_info=data_type, coordinate_names=coordinate_names) if cpu_openmp: add_openmp(ast, num_threads=cpu_openmp) return ast elif target == 'llvm': raise NotImplementedError("Indexed kernels are not yet supported in LLVM backend") elif target == 'gpu': from pystencils.gpucuda import created_indexed_cuda_kernel idx_creator = indexing_creator_from_params(gpu_indexing, gpu_indexing_params) ast = created_indexed_cuda_kernel(assignments, index_fields, type_info=data_type, coordinate_names=coordinate_names, indexing_creator=idx_creator) return ast else: raise ValueError("Unknown target %s. Has to be either 'cpu' or 'gpu'" % (target,)) def create_staggered_kernel(staggered_field, expressions, subexpressions=(), target='cpu', **kwargs): """Kernel that updates a staggered field. Args: staggered_field: field that has one index coordinate and where e.g. f[0,0](0) is interpreted as value at the left cell boundary, f[1,0](0) the right cell boundary and f[0,0](1) the southern cell boundary etc. expressions: sequence of expressions of length dim, defining how the east, southern, (bottom) cell boundary should be update subexpressions: optional sequence of Assignments, that define subexpressions used in the main expressions target: 'cpu' or 'gpu' kwargs: passed directly to create_kernel, iteration slice and ghost_layers parameters are not allowed Returns: AST """ assert 'iteration_slice' not in kwargs and 'ghost_layers' not in kwargs assert staggered_field.index_dimensions == 1, 'Staggered field must have exactly one index dimension' dim = staggered_field.spatial_dimensions counters = [LoopOverCoordinate.get_loop_counter_symbol(i) for i in range(dim)] conditions = [counters[i] < staggered_field.shape[i] - 1 for i in range(dim)] assert len(expressions) == dim final_assignments = [] for d in range(dim): cond = sp.And(*[conditions[i] for i in range(dim) if d != i]) a_coll = AssignmentCollection([Assignment(staggered_field(d), expressions[d])], list(subexpressions)) a_coll = a_coll.new_filtered([staggered_field(d)]) sp_assignments = [SympyAssignment(a.lhs, a.rhs) for a in a_coll.all_assignments] final_assignments.append(Conditional(cond, Block(sp_assignments))) ghost_layers = [(1, 0)] * dim ast = create_kernel(final_assignments, ghost_layers=ghost_layers, target=target, **kwargs) if target == 'cpu': remove_conditionals_in_staggered_kernel(ast) return ast