from types import MappingProxyType import sympy as sp from pystencils.field import Field from pystencils.assignment import Assignment from pystencils.astnodes import LoopOverCoordinate, Conditional, Block, SympyAssignment from pystencils.cpu.vectorization import vectorize from pystencils.simp.assignment_collection import AssignmentCollection from pystencils.gpucuda.indexing import indexing_creator_from_params from pystencils.transformations import remove_conditionals_in_staggered_kernel def create_kernel(assignments, target='cpu', data_type="double", iteration_slice=None, ghost_layers=None, skip_independence_check=False, cpu_openmp=False, cpu_vectorize_info=None, gpu_indexing='block', gpu_indexing_params=MappingProxyType({})): """ Creates abstract syntax tree (AST) of kernel, using a list of update equations. Args: assignments: can be a single assignment, sequence of assignments or an `AssignmentCollection` target: 'cpu', 'llvm' or 'gpu' data_type: data type used for all untyped symbols (i.e. non-fields), can also be a dict from symbol name to type iteration_slice: rectangular subset to iterate over, if not specified the complete non-ghost layer \ part of the field is iterated over ghost_layers: if left to default, the number of necessary ghost layers is determined automatically a single integer specifies the ghost layer count at all borders, can also be a sequence of pairs ``[(x_lower_gl, x_upper_gl), .... ]`` skip_independence_check: don't check that loop iterations are independent. This is needed e.g. for periodicity kernel, that access the field outside the iteration bounds. Use with care! cpu_openmp: True or number of threads for OpenMP parallelization, False for no OpenMP cpu_vectorize_info: a dictionary with keys, 'vector_instruction_set', 'assume_aligned' and 'nontemporal' for documentation of these parameters see vectorize function. Example: '{'instruction_set': 'avx512', 'assume_aligned': True, 'nontemporal':True}' gpu_indexing: either 'block' or 'line' , or custom indexing class, see `AbstractIndexing` gpu_indexing_params: dict with indexing parameters (constructor parameters of indexing class) e.g. for 'block' one can specify '{'block_size': (20, 20, 10) }' Returns: abstract syntax tree (AST) object, that can either be printed as source code with `show_code` or can be compiled with through its 'compile()' member Example: >>> import pystencils as ps >>> import numpy as np >>> s, d = ps.fields('s, d: [2D]') >>> assignment = ps.Assignment(d[0,0], s[0, 1] + s[0, -1] + s[1, 0] + s[-1, 0]) >>> ast = ps.create_kernel(assignment, target='cpu', cpu_openmp=True) >>> kernel = ast.compile() >>> d_arr = np.zeros([5, 5]) >>> kernel(d=d_arr, s=np.ones([5, 5])) >>> d_arr array([[0., 0., 0., 0., 0.], [0., 4., 4., 4., 0.], [0., 4., 4., 4., 0.], [0., 4., 4., 4., 0.], [0., 0., 0., 0., 0.]]) """ # ---- Normalizing parameters split_groups = () if isinstance(assignments, AssignmentCollection): if 'split_groups' in assignments.simplification_hints: split_groups = assignments.simplification_hints['split_groups'] assignments = assignments.all_assignments if isinstance(assignments, Assignment): assignments = [assignments] # ---- Creating ast if target == 'cpu': from pystencils.cpu import create_kernel from pystencils.cpu import add_openmp ast = create_kernel(assignments, type_info=data_type, split_groups=split_groups, iteration_slice=iteration_slice, ghost_layers=ghost_layers, skip_independence_check=skip_independence_check) if cpu_openmp: add_openmp(ast, num_threads=cpu_openmp) if cpu_vectorize_info: if cpu_vectorize_info is True: vectorize(ast) elif isinstance(cpu_vectorize_info, dict): vectorize(ast, **cpu_vectorize_info) else: raise ValueError("Invalid value for cpu_vectorize_info") return ast elif target == 'llvm': from pystencils.llvm import create_kernel ast = create_kernel(assignments, type_info=data_type, split_groups=split_groups, iteration_slice=iteration_slice, ghost_layers=ghost_layers) return ast elif target == 'gpu': from pystencils.gpucuda import create_cuda_kernel ast = create_cuda_kernel(assignments, type_info=data_type, indexing_creator=indexing_creator_from_params(gpu_indexing, gpu_indexing_params), iteration_slice=iteration_slice, ghost_layers=ghost_layers, skip_independence_check=skip_independence_check) return ast else: raise ValueError("Unknown target %s. Has to be one of 'cpu', 'gpu' or 'llvm' " % (target,)) def create_indexed_kernel(assignments, index_fields, target='cpu', data_type="double", coordinate_names=('x', 'y', 'z'), cpu_openmp=True, gpu_indexing='block', gpu_indexing_params=MappingProxyType({})): """ Similar to :func:`create_kernel`, but here not all cells of a field are updated but only cells with coordinates which are stored in an index field. This traversal method can e.g. be used for boundary handling. The coordinates are stored in a separated index_field, which is a one dimensional array with struct data type. This struct has to contain fields named 'x', 'y' and for 3D fields ('z'). These names are configurable with the 'coordinate_names' parameter. The struct can have also other fields that can be read and written in the kernel, for example boundary parameters. index_fields: list of index fields, i.e. 1D fields with struct data type coordinate_names: name of the coordinate fields in the struct data type Example: >>> import pystencils as ps >>> import numpy as np >>> >>> # Index field stores the indices of the cell to visit together with optional values >>> index_arr_dtype = np.dtype([('x', np.int32), ('y', np.int32), ('val', np.double)]) >>> index_arr = np.array([(1, 1, 0.1), (2, 2, 0.2), (3, 3, 0.3)], dtype=index_arr_dtype) >>> idx_field = ps.fields(idx=index_arr) >>> >>> # Additional values stored in index field can be accessed in the kernel as well >>> s, d = ps.fields('s, d: [2D]') >>> assignment = ps.Assignment(d[0,0], 2 * s[0, 1] + 2 * s[1, 0] + idx_field('val')) >>> ast = create_indexed_kernel(assignment, [idx_field], coordinate_names=('x', 'y')) >>> kernel = ast.compile() >>> d_arr = np.zeros([5, 5]) >>> kernel(s=np.ones([5, 5]), d=d_arr, idx=index_arr) >>> d_arr array([[0. , 0. , 0. , 0. , 0. ], [0. , 4.1, 0. , 0. , 0. ], [0. , 0. , 4.2, 0. , 0. ], [0. , 0. , 0. , 4.3, 0. ], [0. , 0. , 0. , 0. , 0. ]]) """ if isinstance(assignments, Assignment): assignments = [assignments] elif isinstance(assignments, AssignmentCollection): assignments = assignments.all_assignments if target == 'cpu': from pystencils.cpu import create_indexed_kernel from pystencils.cpu import add_openmp ast = create_indexed_kernel(assignments, index_fields=index_fields, type_info=data_type, coordinate_names=coordinate_names) if cpu_openmp: add_openmp(ast, num_threads=cpu_openmp) return ast elif target == 'llvm': raise NotImplementedError("Indexed kernels are not yet supported in LLVM backend") elif target == 'gpu': from pystencils.gpucuda import created_indexed_cuda_kernel idx_creator = indexing_creator_from_params(gpu_indexing, gpu_indexing_params) ast = created_indexed_cuda_kernel(assignments, index_fields, type_info=data_type, coordinate_names=coordinate_names, indexing_creator=idx_creator) return ast else: raise ValueError("Unknown target %s. Has to be either 'cpu' or 'gpu'" % (target,)) def create_staggered_kernel_from_assignments(assignments, **kwargs): assert 'iteration_slice' not in kwargs and 'ghost_layers' not in kwargs lhs_fields = {a.lhs.atoms(Field.Access) for a in assignments} assert len(lhs_fields) == 1 staggered_field = lhs_fields.pop() dim = staggered_field.spatial_dimensions counters = [LoopOverCoordinate.get_loop_counter_symbol(i) for i in range(dim)] conditions = [counters[i] < staggered_field.shape[i] - 1 for i in range(dim)] guarded_assignments = [] for d in range(dim): cond = sp.And(*[conditions[i] for i in range(dim) if d != i]) guarded_assignments.append(Conditional(cond, Block(assignments))) def create_staggered_kernel(staggered_field, expressions, subexpressions=(), target='cpu', **kwargs): """Kernel that updates a staggered field. .. image:: /img/staggered_grid.svg Args: staggered_field: field where the first index coordinate defines the location of the staggered value can have 1 or 2 index coordinates, in case of two index coordinates at every staggered location a vector is stored, expressions parameter has to be a sequence of sequences then where e.g. ``f[0,0](0)`` is interpreted as value at the left cell boundary, ``f[1,0](0)`` the right cell boundary and ``f[0,0](1)`` the southern cell boundary etc. expressions: sequence of expressions of length dim, defining how the west, southern, (bottom) cell boundary should be updated. subexpressions: optional sequence of Assignments, that define subexpressions used in the main expressions target: 'cpu' or 'gpu' kwargs: passed directly to create_kernel, iteration slice and ghost_layers parameters are not allowed Returns: AST, see `create_kernel` """ assert 'iteration_slice' not in kwargs and 'ghost_layers' not in kwargs assert staggered_field.index_dimensions in (1, 2), 'Staggered field must have one or two index dimensions' dim = staggered_field.spatial_dimensions counters = [LoopOverCoordinate.get_loop_counter_symbol(i) for i in range(dim)] conditions = [counters[i] < staggered_field.shape[i] - 1 for i in range(dim)] assert len(expressions) == dim if staggered_field.index_dimensions == 2: assert all(len(sublist) == len(expressions[0]) for sublist in expressions), \ "If staggered field has two index dimensions expressions has to be a sequence of sequences of all the " \ "same length." final_assignments = [] for d in range(dim): cond = sp.And(*[conditions[i] for i in range(dim) if d != i]) if staggered_field.index_dimensions == 1: assignments = [Assignment(staggered_field(d), expressions[d])] a_coll = AssignmentCollection(assignments, list(subexpressions)).new_filtered([staggered_field(d)]) elif staggered_field.index_dimensions == 2: assert staggered_field.has_fixed_index_shape assignments = [Assignment(staggered_field(d, i), expr) for i, expr in enumerate(expressions[d])] a_coll = AssignmentCollection(assignments, list(subexpressions)) a_coll = a_coll.new_filtered([staggered_field(d, i) for i in range(staggered_field.index_shape[1])]) sp_assignments = [SympyAssignment(a.lhs, a.rhs) for a in a_coll.all_assignments] final_assignments.append(Conditional(cond, Block(sp_assignments))) ghost_layers = [(1, 0)] * dim cpu_vectorize_info = kwargs.get('cpu_vectorize_info', None) if cpu_vectorize_info: del kwargs['cpu_vectorize_info'] ast = create_kernel(final_assignments, ghost_layers=ghost_layers, target=target, **kwargs) if target == 'cpu': remove_conditionals_in_staggered_kernel(ast) if cpu_vectorize_info is True: vectorize(ast) elif isinstance(cpu_vectorize_info, dict): vectorize(ast, **cpu_vectorize_info) return ast