pystencils ========== [](https://mybinder.org/v2/gh/mabau/pystencils/master?filepath=doc%2Fnotebooks) [](http://pycodegen.pages.walberla.net/pystencils) [](https://badge.fury.io/py/pystencils) [](https://i10git.cs.fau.de/pycodegen/pystencils/commits/master) [](http://pycodegen.pages.walberla.net/pystencils/coverage_report) Run blazingly fast stencil codes on numpy arrays. *pystencils* uses sympy to define stencil operations, that can be executed on numpy arrays. Exploiting the stencil structure makes *pystencils* run faster than normal numpy code and even as Cython and numba, [as demonstrated in this notebook](http://pycodegen.pages.walberla.net/pystencils/notebooks/demo_benchmark.html). Here is a code snippet that computes the average of neighboring cells: ```python import pystencils as ps import numpy as np f, g = ps.fields("f, g : [2D]") stencil = ps.Assignment(g[0, 0], (f[1, 0] + f[-1, 0] + f[0, 1] + f[0, -1]) / 4) kernel = ps.create_kernel(stencil).compile() f_arr = np.random.rand(1000, 1000) g_arr = np.empty_like(f_arr) kernel(f=f_arr, g=g_arr) ``` *pystencils* is mostly used for numerical simulations using finite difference or finite volume methods. It comes with automatic finite difference discretization for PDEs: ```python c, v = ps.fields("c, v(2): [2D]") adv_diff_pde = ps.fd.transient(c) - ps.fd.diffusion(c, sp.symbols("D")) + ps.fd.advection(c, v) discretize = ps.fd.Discretization2ndOrder(dx=1, dt=0.01) discretization = discretize(adv_diff_pde) ``` Look at the [documentation](http://pycodegen.pages.walberla.net/pystencils) to learn more. Installation ------------ ```bash pip install pystencils[interactive] ``` Without `[interactive]` you get a minimal version with very little dependencies. All options: - `gpu`: use this if an Nvidia GPU is available and CUDA is installed - `opencl`: basic OpenCL support (experimental) - `alltrafos`: pulls in additional dependencies for loop simplification e.g. libisl - `bench_db`: functionality to store benchmark result in object databases - `interactive`: installs dependencies to work in Jupyter including image I/O, plotting etc. - `autodiff`: enable derivation of adjoint kernels and generation of Torch/Tensorflow operations - `doc`: packages to build documentation Options can be combined e.g. ```bash pip install pystencils[interactive,gpu,doc] ``` Documentation ------------- Read the docs [here](http://pycodegen.pages.walberla.net/pystencils) and check out the Jupyter notebooks in `doc/notebooks`.