data_types.py 14.8 KB
Newer Older
1
import ctypes
2
import sympy as sp
3
import numpy as np
4
from sympy.core.cache import cacheit
5

6
from pystencils.cache import memorycache
7
8
from pystencils.utils import allEqual

9
10
11
12
13
14
15
16
17
18

# to work in conditions of sp.Piecewise castFunc has to be of type Relational as well
class castFunc(sp.Function, sp.Rel):

    @property
    def canonical(self):
        if hasattr(self.args[0], 'canonical'):
            return self.args[0].canonical
        else:
            raise NotImplementedError()
19
20
21


class TypedSymbol(sp.Symbol):
Martin Bauer's avatar
Martin Bauer committed
22
23
    def __new__(cls, *args, **kwds):
        obj = TypedSymbol.__xnew_cached_(cls, *args, **kwds)
24
25
        return obj

26
    def __new_stage2__(cls, name, dtype):
27
        obj = super(TypedSymbol, cls).__xnew__(cls, name)
28
29
30
31
32
        try:
            obj._dtype = createType(dtype)
        except TypeError:
            # on error keep the string
            obj._dtype = dtype
33
34
35
36
37
38
39
40
41
42
43
        return obj

    __xnew__ = staticmethod(__new_stage2__)
    __xnew_cached_ = staticmethod(cacheit(__new_stage2__))

    @property
    def dtype(self):
        return self._dtype

    def _hashable_content(self):
        superClassContents = list(super(TypedSymbol, self)._hashable_content())
44
        return tuple(superClassContents + [hash(str(self._dtype))])
45
46

    def __getnewargs__(self):
47
48
49
        return self.name, self.dtype


50
def createType(specification):
Jan Hoenig's avatar
Jan Hoenig committed
51
52
53
54
55
    """
    Create a subclass of Type according to a string or an object of subclass Type
    :param specification: Type object, or a string
    :return: Type object, or a new Type object parsed from the string
    """
56
57
58
59
60
61
    if isinstance(specification, Type):
        return specification
    elif isinstance(specification, str):
        return createTypeFromString(specification)
    else:
        npDataType = np.dtype(specification)
62
63
64
65
        if npDataType.fields is None:
            return BasicType(npDataType, const=False)
        else:
            return StructType(npDataType, const=False)
66
67


68
@memorycache(maxsize=64)
69
def createTypeFromString(specification):
Jan Hoenig's avatar
Jan Hoenig committed
70
71
72
73
74
    """
    Creates a new Type object from a c-like string specification
    :param specification: Specification string
    :return: Type object
    """
75
76
77
78
79
80
81
    specification = specification.lower().split()
    parts = []
    current = []
    for s in specification:
        if s == '*':
            parts.append(current)
            current = [s]
82
        else:
83
84
85
            current.append(s)
    if len(current) > 0:
        parts.append(current)
Jan Hoenig's avatar
Jan Hoenig committed
86
        # Parse native part
87
88
89
90
91
92
    basePart = parts.pop(0)
    const = False
    if 'const' in basePart:
        const = True
        basePart.remove('const')
    assert len(basePart) == 1
Jan Hoenig's avatar
Jan Hoenig committed
93
94
95
    if basePart[0][-1] == "*":
        basePart[0] = basePart[0][:-1]
        parts.append('*')
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    baseType = BasicType(basePart[0], const)
    currentType = baseType
    # Parse pointer parts
    for part in parts:
        restrict = False
        const = False
        if 'restrict' in part:
            restrict = True
            part.remove('restrict')
        if 'const' in part:
            const = True
            part.remove("const")
        assert len(part) == 1 and part[0] == '*'
        currentType = PointerType(currentType, const, restrict)
    return currentType


def getBaseType(type):
    while type.baseType is not None:
        type = type.baseType
    return type


def toCtypes(dataType):
Jan Hoenig's avatar
Jan Hoenig committed
120
121
122
123
124
    """
    Transforms a given Type into ctypes
    :param dataType: Subclass of Type
    :return: ctypes type object
    """
125
126
    if isinstance(dataType, PointerType):
        return ctypes.POINTER(toCtypes(dataType.baseType))
127
128
    elif isinstance(dataType, StructType):
        return ctypes.POINTER(ctypes.c_uint8)
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    else:
        return toCtypes.map[dataType.numpyDtype]

toCtypes.map = {
    np.dtype(np.int8): ctypes.c_int8,
    np.dtype(np.int16): ctypes.c_int16,
    np.dtype(np.int32): ctypes.c_int32,
    np.dtype(np.int64): ctypes.c_int64,

    np.dtype(np.uint8): ctypes.c_uint8,
    np.dtype(np.uint16): ctypes.c_uint16,
    np.dtype(np.uint32): ctypes.c_uint32,
    np.dtype(np.uint64): ctypes.c_uint64,

    np.dtype(np.float32): ctypes.c_float,
    np.dtype(np.float64): ctypes.c_double,
}


148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
def peelOffType(dtype, typeToPeelOff):
    while type(dtype) is typeToPeelOff:
        dtype = dtype.baseType
    return dtype


def collateTypes(types):
    """
    Takes a sequence of types and returns their "common type" e.g. (float, double, float) -> double
    Uses the collation rules from numpy.
    """

    # Pointer arithmetic case i.e. pointer + integer is allowed
    if any(type(t) is PointerType for t in types):
        pointerType = None
        for t in types:
            if type(t) is PointerType:
                if pointerType is not None:
                    raise ValueError("Cannot collate the combination of two pointer types")
                pointerType = t
            elif type(t) is BasicType:
                if not (t.is_int() or t.is_uint()):
                    raise ValueError("Invalid pointer arithmetic")
            else:
                raise ValueError("Invalid pointer arithmetic")
        return pointerType

    # peel of vector types, if at least one vector type occurred the result will also be the vector type
    vectorType = [t for t in types if type(t) is VectorType]
    if not allEqual(t.width for t in vectorType):
        raise ValueError("Collation failed because of vector types with different width")
    types = [peelOffType(t, VectorType) for t in types]

    # now we should have a list of basic types - struct types are not yet supported
    assert all(type(t) is BasicType for t in types)

    # use numpy collation -> create type from numpy type -> and, put vector type around if necessary
    resultNumpyType = np.result_type(*(t.numpyDtype for t in types))
    result = BasicType(resultNumpyType)
    if vectorType:
        result = VectorType(result, vectorType[0].width)
    return result


@memorycache(maxsize=2048)
193
def getTypeOfExpression(expr):
194
195
196
197
198
199
200
201
202
    from pystencils.astnodes import ResolvedFieldAccess
    expr = sp.sympify(expr)
    if isinstance(expr, sp.Integer):
        return createTypeFromString("int")
    elif isinstance(expr, sp.Rational) or isinstance(expr, sp.Float):
        return createTypeFromString("double")
    elif isinstance(expr, ResolvedFieldAccess):
        return expr.field.dtype
    elif isinstance(expr, TypedSymbol):
203
        return expr.dtype
204
205
206
207
208
209
210
211
212
213
    elif isinstance(expr, sp.Symbol):
        raise ValueError("All symbols inside this expression have to be typed!")
    elif hasattr(expr, 'func') and expr.func == castFunc:
        return expr.args[1]
    elif hasattr(expr, 'func') and expr.func == sp.Piecewise:
        branchResults = [a[0] for a in expr.args]
        return collateTypes(tuple(getTypeOfExpression(a) for a in branchResults))
    elif isinstance(expr, sp.Indexed):
        typedSymbol = expr.base.label
        return typedSymbol.dtype
214
215
216
217
218
219
220
    elif isinstance(expr, sp.boolalg.Boolean):
        # if any arg is of vector type return a vector boolean, else return a normal scalar boolean
        result = createTypeFromString("bool")
        vecArgs = [getTypeOfExpression(a) for a in expr.args if isinstance(getTypeOfExpression(a), VectorType)]
        if vecArgs:
            result = VectorType(result, width=vecArgs[0].width)
        return result
221
222
223
224
225
    elif isinstance(expr, sp.Expr):
        types = tuple(getTypeOfExpression(a) for a in expr.args)
        return collateTypes(types)

    raise NotImplementedError("Could not determine type for " + str(expr))
226
227


228
229
230
class Type(sp.Basic):
    def __new__(cls, *args, **kwargs):
        return sp.Basic.__new__(cls)
231

Jan Hoenig's avatar
Jan Hoenig committed
232
233
234
235
236
237
    def __lt__(self, other):
        # Needed for sorting the types inside an expression
        if isinstance(self, BasicType):
            if isinstance(other, BasicType):
                return self.numpyDtype < other.numpyDtype  # TODO const
            if isinstance(other, PointerType):
238
                return False
Jan Hoenig's avatar
Jan Hoenig committed
239
240
241
242
            if isinstance(other, StructType):
                raise NotImplementedError("Struct type comparison is not yet implemented")
        if isinstance(self, PointerType):
            if isinstance(other, BasicType):
243
                return True
Jan Hoenig's avatar
Jan Hoenig committed
244
245
246
247
248
249
            if isinstance(other, PointerType):
                return self.baseType < other.baseType  # TODO const, restrict
            if isinstance(other, StructType):
                raise NotImplementedError("Struct type comparison is not yet implemented")
        if isinstance(self, StructType):
            raise NotImplementedError("Struct type comparison is not yet implemented")
250
251
252
253
254


class BasicType(Type):
    @staticmethod
    def numpyNameToC(name):
Jan Hoenig's avatar
Jan Hoenig committed
255
256
257
258
        if name == 'float64':
            return 'double'
        elif name == 'float32':
            return 'float'
259
260
261
262
        elif name.startswith('int'):
            width = int(name[len("int"):])
            return "int%d_t" % (width,)
        elif name.startswith('uint'):
263
            width = int(name[len("uint"):])
264
265
266
267
268
269
270
271
            return "uint%d_t" % (width,)
        elif name == 'bool':
            return 'bool'
        else:
            raise NotImplemented("Can map numpy to C name for %s" % (name,))

    def __init__(self, dtype, const=False):
        self.const = const
272
273
274
275
        if isinstance(dtype, Type):
            self._dtype = dtype.numpyDtype
        else:
            self._dtype = np.dtype(dtype)
276
277
278
279
        assert self._dtype.fields is None, "Tried to initialize NativeType with a structured type"
        assert self._dtype.hasobject is False
        assert self._dtype.subdtype is None

280
281
282
    def __getnewargs__(self):
        return self.numpyDtype, self.const

283
284
285
    @property
    def baseType(self):
        return None
286

287
288
289
290
    @property
    def numpyDtype(self):
        return self._dtype

291
292
293
294
    @property
    def itemSize(self):
        return 1

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    def is_int(self):
        return self.numpyDtype in np.sctypes['int']

    def is_float(self):
        return self.numpyDtype in np.sctypes['float']

    def is_uint(self):
        return self.numpyDtype in np.sctypes['uint']

    def is_comlex(self):
        return self.numpyDtype in np.sctypes['complex']

    def is_other(self):
        return self.numpyDtype in np.sctypes['others']

310
311
312
313
    @property
    def baseName(self):
        return BasicType.numpyNameToC(str(self._dtype))

Jan Hoenig's avatar
Jan Hoenig committed
314
    def __str__(self):
315
316
317
318
        result = BasicType.numpyNameToC(str(self._dtype))
        if self.const:
            result += " const"
        return result
Jan Hoenig's avatar
Jan Hoenig committed
319
320

    def __eq__(self, other):
321
322
        if not isinstance(other, BasicType):
            return False
Jan Hoenig's avatar
Jan Hoenig committed
323
        else:
324
325
326
327
328
329
            return (self.numpyDtype, self.const) == (other.numpyDtype, other.const)

    def __hash__(self):
        return hash(str(self))


330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
class VectorType(Type):
    instructionSet = None

    def __init__(self, baseType, width=4):
        self._baseType = baseType
        self.width = width

    @property
    def baseType(self):
        return self._baseType

    @property
    def itemSize(self):
        return self.width * self.baseType.itemSize

    def __eq__(self, other):
        if not isinstance(other, VectorType):
            return False
        else:
            return (self.baseType, self.width) == (other.baseType, other.width)

    def __str__(self):
        if self.instructionSet is None:
            return "%s[%d]" % (self.baseType, self.width)
        else:
            if self.baseType == createTypeFromString("int64"):
                return self.instructionSet['int']
            elif self.baseType == createTypeFromString("double"):
                return self.instructionSet['double']
            elif self.baseType == createTypeFromString("float"):
                return self.instructionSet['float']
361
362
            elif self.baseType == createTypeFromString("bool"):
                return self.instructionSet['bool']
363
364
365
366
367
368
369
            else:
                raise NotImplementedError()

    def __hash__(self):
        return hash(str(self))


370
371
372
373
374
375
class PointerType(Type):
    def __init__(self, baseType, const=False, restrict=True):
        self._baseType = baseType
        self.const = const
        self.restrict = restrict

376
377
378
    def __getnewargs__(self):
        return self.baseType, self.const, self.restrict

379
380
381
382
383
384
385
386
    @property
    def alias(self):
        return not self.restrict

    @property
    def baseType(self):
        return self._baseType

387
388
389
390
    @property
    def itemSize(self):
        return self.baseType.itemSize

391
392
    def __eq__(self, other):
        if not isinstance(other, PointerType):
Jan Hoenig's avatar
Jan Hoenig committed
393
            return False
394
395
396
        else:
            return (self.baseType, self.const, self.restrict) == (other.baseType, other.const, other.restrict)

Jan Hoenig's avatar
Jan Hoenig committed
397
    def __str__(self):
Jan Hoenig's avatar
Jan Hoenig committed
398
        return "%s *%s%s" % (self.baseType, " RESTRICT " if self.restrict else "", " const " if self.const else "")
399
400
401
402

    def __hash__(self):
        return hash(str(self))

Jan Hoenig's avatar
Jan Hoenig committed
403

404
class StructType(object):
405
406
    def __init__(self, numpyType, const=False):
        self.const = const
407
        self._dtype = np.dtype(numpyType)
Martin Bauer's avatar
Martin Bauer committed
408

409
410
411
    def __getnewargs__(self):
        return self.numpyDtype, self.const

412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
    @property
    def baseType(self):
        return None

    @property
    def numpyDtype(self):
        return self._dtype

    @property
    def itemSize(self):
        return self.numpyDtype.itemsize

    def getElementOffset(self, elementName):
        return self.numpyDtype.fields[elementName][1]

    def getElementType(self, elementName):
        npElementType = self.numpyDtype.fields[elementName][0]
        return BasicType(npElementType, self.const)

431
432
433
    def hasElement(self, elementName):
        return elementName in self.numpyDtype.fields

434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
    def __eq__(self, other):
        if not isinstance(other, StructType):
            return False
        else:
            return (self.numpyDtype, self.const) == (other.numpyDtype, other.const)

    def __str__(self):
        # structs are handled byte-wise
        result = "uint8_t"
        if self.const:
            result += " const"
        return result

    def __hash__(self):
        return hash((self.numpyDtype, self.const))
449

Jan Hoenig's avatar
Jan Hoenig committed
450
    # TODO this should not work at all!!!
Jan Hoenig's avatar
Jan Hoenig committed
451
452
453
454
455
456
457
    def __gt__(self, other):
        if self.ptr and not other.ptr:
            return True
        if self.dtype > other.dtype:
            return True


Jan Hoenig's avatar
Jan Hoenig committed
458
def get_type_from_sympy(node):
Jan Hoenig's avatar
Jan Hoenig committed
459
460
461
462
463
    """
    Creates a Type object from a Sympy object
    :param node: Sympy object
    :return: Type object
    """
Jan Hoenig's avatar
Jan Hoenig committed
464
465
466
467
468
469
470
471
472
473
    # Rational, NumberSymbol?
    # Zero, One, NegativeOne )= Integer
    # Half )= Rational
    # NAN, Infinity, Negative Inifinity,
    # Exp1, Imaginary Unit, Pi, EulerGamma, Catalan, Golden Ratio
    # Pow, Mul, Add, Mod, Relational
    if not isinstance(node, sp.Number):
        raise TypeError(node, 'is not a sp.Number')

    if isinstance(node, sp.Float) or isinstance(node, sp.RealNumber):
Jan Hoenig's avatar
Jan Hoenig committed
474
        return createType('double'), float(node)
Jan Hoenig's avatar
Jan Hoenig committed
475
    elif isinstance(node, sp.Integer):
Jan Hoenig's avatar
Jan Hoenig committed
476
        return createType('int'), int(node)
Jan Hoenig's avatar
Jan Hoenig committed
477
478
479
    elif isinstance(node, sp.Rational):
        raise NotImplementedError('Rationals are not supported yet')
    else:
Jan Hoenig's avatar
Jan Hoenig committed
480
        raise TypeError(node, ' is not a supported type (yet)!')