test_datahandling.py 7.96 KB
Newer Older
1
2
import os
from tempfile import TemporaryDirectory
Martin Bauer's avatar
Martin Bauer committed
3
4
5

import numpy as np

6
import pystencils as ps
Martin Bauer's avatar
Martin Bauer committed
7
from pystencils import create_data_handling, create_kernel
8

9
10
11
12
13
14
15
try:
    import pytest
except ImportError:
    import unittest.mock
    pytest = unittest.mock.MagicMock()


16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
def basic_iteration(dh):
    dh.add_array('basic_iter_test_gl_default')
    dh.add_array('basic_iter_test_gl_3', ghost_layers=3)

    for b in dh.iterate():
        assert b.shape == b['basic_iter_test_gl_3'].shape
        assert b.shape == b['basic_iter_test_gl_default'].shape


def access_and_gather(dh, domain_size):
    dh.add_array('f1', dtype=np.dtype(np.int32))
    dh.add_array_like('f2', 'f1')
    dh.add_array('v1', values_per_cell=3, dtype=np.int64, ghost_layers=2)
    dh.add_array_like('v2', 'v1')

    dh.swap('f1', 'f2')
    dh.swap('v1', 'v2')

    # Check symbolic field properties
    assert dh.fields.f1.index_dimensions == 0
    assert dh.fields.f1.spatial_dimensions == len(domain_size)
    assert dh.fields.f1.dtype.numpy_dtype == np.int32

    assert dh.fields.v1.index_dimensions == 1
    assert dh.fields.v1.spatial_dimensions == len(domain_size)
    assert dh.fields.v1.dtype.numpy_dtype == np.int64

    for b in dh.iterate(ghost_layers=0):
        val = sum(b.cell_index_arrays)
        np.copyto(b['f1'], val)
        for i, coord_arr in enumerate(b.cell_index_arrays):
            np.copyto(b['v1'][..., i], coord_arr)

    full_arr = dh.gather_array('v1')
    if full_arr is not None:
        expected_shape = domain_size + (3,)
        assert full_arr.shape == expected_shape
        for x in range(full_arr.shape[0]):
            for y in range(full_arr.shape[1]):
                if len(domain_size) == 3:
                    for z in range(full_arr.shape[2]):
                        assert full_arr[x, y, z, 0] == x
                        assert full_arr[x, y, z, 1] == y
                        assert full_arr[x, y, z, 2] == z
                else:
                    assert len(domain_size) == 2
                    assert full_arr[x, y, 0] == x
                    assert full_arr[x, y, 1] == y

    full_arr = dh.gather_array('f1')
    if full_arr is not None:
        expected_shape = domain_size
        assert full_arr.shape == expected_shape
        for x in range(full_arr.shape[0]):
            for y in range(full_arr.shape[1]):
                if len(domain_size) == 3:
                    for z in range(full_arr.shape[2]):
                        assert full_arr[x, y, z] == x + y + z
                else:
                    assert len(domain_size) == 2
                    assert full_arr[x, y] == x + y


def synchronization(dh, test_gpu=False):
    field_name = 'comm_field_test'
    if test_gpu:
        try:
            from pycuda import driver
            import pycuda.autoinit
        except ImportError:
            return
        field_name += 'Gpu'

    dh.add_array(field_name, ghost_layers=1, dtype=np.int32, cpu=True, gpu=test_gpu)

    # initialize everything with 1
    for b in dh.iterate(ghost_layers=1):
        b[field_name].fill(1)
    for b in dh.iterate(ghost_layers=0):
        b[field_name].fill(42)

    if test_gpu:
        dh.to_gpu(field_name)

    dh.synchronization_function(field_name, target='gpu' if test_gpu else 'cpu')()

    if test_gpu:
        dh.to_cpu(field_name)

    for b in dh.iterate(ghost_layers=1):
        np.testing.assert_equal(42, b[field_name])


109
def kernel_execution_jacobi(dh, target):
110

111
    test_gpu = target == 'gpu' or target == 'opencl'
112
113
114
115
116
117
118
119
120
121
    dh.add_array('f', gpu=test_gpu)
    dh.add_array('tmp', gpu=test_gpu)
    stencil_2d = [(1, 0), (-1, 0), (0, 1), (0, -1)]
    stencil_3d = [(1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 1), (0, 0, -1)]
    stencil = stencil_2d if dh.dim == 2 else stencil_3d

    @ps.kernel
    def jacobi():
        dh.fields.tmp.center @= sum(dh.fields.f.neighbors(stencil)) / len(stencil)

122
    kernel = create_kernel(jacobi, target).compile()
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    for b in dh.iterate(ghost_layers=1):
        b['f'].fill(42)
    dh.run_kernel(kernel)
    for b in dh.iterate(ghost_layers=0):
        np.testing.assert_equal(b['f'], 42)


def vtk_output(dh):
    dh.add_array('scalar_field')
    dh.add_array('vector_field', values_per_cell=dh.dim)
    dh.add_array('multiple_scalar_field', values_per_cell=9)
    dh.add_array('flag_field', dtype=np.uint16)

    fields_names = ['scalar_field', 'vector_field', 'multiple_scalar_field', 'flag_field']
    with TemporaryDirectory() as tmp_dir:
        writer1 = dh.create_vtk_writer(os.path.join(tmp_dir, "out1"), fields_names, ghost_layers=True)
        writer2 = dh.create_vtk_writer(os.path.join(tmp_dir, "out2"), fields_names, ghost_layers=False)
        masks_to_name = {1: 'flag1', 5: 'some_mask'}
        writer3 = dh.create_vtk_writer_for_flag_array(os.path.join(tmp_dir, "out3"), 'flag_field', masks_to_name)
        writer1(1)
        writer2(1)
        writer3(1)


def reduction(dh):
    float_seq = [1.0, 2.0, 3.0]
    int_seq = [1, 2, 3]
    for op in ('min', 'max', 'sum'):
        assert (dh.reduce_float_sequence(float_seq, op) == float_seq).all()
        assert (dh.reduce_int_sequence(int_seq, op) == int_seq).all()


def test_symbolic_fields():
    dh = create_data_handling(domain_size=(5, 7))
    dh.add_array('f1', values_per_cell=dh.dim)
    assert dh.fields['f1'].spatial_dimensions == dh.dim
    assert dh.fields['f1'].index_dimensions == 1

    dh.add_array_like("f_tmp", "f1", latex_name=r"f_{tmp}")
    assert dh.fields['f_tmp'].spatial_dimensions == dh.dim
    assert dh.fields['f_tmp'].index_dimensions == 1

    dh.swap('f1', 'f_tmp')


def test_access():
    for domain_shape in [(2, 3, 4), (2, 4)]:
        for f_size in (1, 4):
            dh = create_data_handling(domain_size=domain_shape)
            dh.add_array('f1', values_per_cell=f_size)
            assert dh.dim == len(domain_shape)

            for b in dh.iterate(ghost_layers=1):
                if f_size > 1:
                    assert b['f1'].shape == tuple(ds+2 for ds in domain_shape) + (f_size,)
                else:
                    assert b['f1'].shape == tuple(ds + 2 for ds in domain_shape)

            for b in dh.iterate(ghost_layers=0):
                if f_size > 1:
                    assert b['f1'].shape == domain_shape + (f_size,)
                else:
                    assert b['f1'].shape == domain_shape


def test_access_and_gather():
    for domain_shape in [(2, 2, 3), (2, 3)]:
        dh = create_data_handling(domain_size=domain_shape, periodicity=True)
        access_and_gather(dh, domain_shape)
        synchronization(dh, test_gpu=False)
        synchronization(dh, test_gpu=True)


def test_kernel():
    for domain_shape in [(4, 5), (3, 4, 5)]:
        dh = create_data_handling(domain_size=domain_shape, periodicity=True)
199
        kernel_execution_jacobi(dh, 'cpu')
200
201
        reduction(dh)

Martin Bauer's avatar
Martin Bauer committed
202
203
204
        try:
            import pycuda
            dh = create_data_handling(domain_size=domain_shape, periodicity=True)
205
            kernel_execution_jacobi(dh, 'gpu')
Martin Bauer's avatar
Martin Bauer committed
206
207
208
        except ImportError:
            pass

209

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
@pytest.mark.parametrize('target', ('cpu', 'gpu', 'opencl'))
def test_kernel_param(target):
    for domain_shape in [(4, 5), (3, 4, 5)]:
        if target == 'gpu':
            pytest.importorskip('pycuda')
        if target == 'opencl':
            pytest.importorskip('pyopencl')
            from pystencils.opencl.opencljit import init_globally
            init_globally()

        dh = create_data_handling(domain_size=domain_shape, periodicity=True, default_target=target)
        kernel_execution_jacobi(dh, target)
        reduction(dh)


225
226
227
228
def test_vtk_output():
    for domain_shape in [(4, 5), (3, 4, 5)]:
        dh = create_data_handling(domain_size=domain_shape, periodicity=True)
        vtk_output(dh)
Stephan Seitz's avatar
Stephan Seitz committed
229
230
231
232
233
234
235
236
237
238
239
240
241


def test_add_arrays():
    domain_shape = (3, 4, 5)
    field_description = 'x, y(9)'

    dh = create_data_handling(domain_size=domain_shape, default_ghost_layers=0, default_layout='numpy')
    dh.add_arrays(field_description)

    x, y = ps.fields(field_description + ': [3,4,5]')

    assert x == dh.fields['x']
    assert y == dh.fields['y']