test_datahandling.py 11.2 KB
Newer Older
1
2
import os
from tempfile import TemporaryDirectory
Martin Bauer's avatar
Martin Bauer committed
3
4
5

import numpy as np

6
import pystencils as ps
Martin Bauer's avatar
Martin Bauer committed
7
from pystencils import create_data_handling, create_kernel
8

9
10
11
12
13
14
15
try:
    import pytest
except ImportError:
    import unittest.mock
    pytest = unittest.mock.MagicMock()


16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
def basic_iteration(dh):
    dh.add_array('basic_iter_test_gl_default')
    dh.add_array('basic_iter_test_gl_3', ghost_layers=3)

    for b in dh.iterate():
        assert b.shape == b['basic_iter_test_gl_3'].shape
        assert b.shape == b['basic_iter_test_gl_default'].shape


def access_and_gather(dh, domain_size):
    dh.add_array('f1', dtype=np.dtype(np.int32))
    dh.add_array_like('f2', 'f1')
    dh.add_array('v1', values_per_cell=3, dtype=np.int64, ghost_layers=2)
    dh.add_array_like('v2', 'v1')

    dh.swap('f1', 'f2')
    dh.swap('v1', 'v2')

    # Check symbolic field properties
    assert dh.fields.f1.index_dimensions == 0
    assert dh.fields.f1.spatial_dimensions == len(domain_size)
    assert dh.fields.f1.dtype.numpy_dtype == np.int32

    assert dh.fields.v1.index_dimensions == 1
    assert dh.fields.v1.spatial_dimensions == len(domain_size)
    assert dh.fields.v1.dtype.numpy_dtype == np.int64

    for b in dh.iterate(ghost_layers=0):
        val = sum(b.cell_index_arrays)
        np.copyto(b['f1'], val)
        for i, coord_arr in enumerate(b.cell_index_arrays):
            np.copyto(b['v1'][..., i], coord_arr)

    full_arr = dh.gather_array('v1')
    if full_arr is not None:
        expected_shape = domain_size + (3,)
        assert full_arr.shape == expected_shape
        for x in range(full_arr.shape[0]):
            for y in range(full_arr.shape[1]):
                if len(domain_size) == 3:
                    for z in range(full_arr.shape[2]):
                        assert full_arr[x, y, z, 0] == x
                        assert full_arr[x, y, z, 1] == y
                        assert full_arr[x, y, z, 2] == z
                else:
                    assert len(domain_size) == 2
                    assert full_arr[x, y, 0] == x
                    assert full_arr[x, y, 1] == y

    full_arr = dh.gather_array('f1')
    if full_arr is not None:
        expected_shape = domain_size
        assert full_arr.shape == expected_shape
        for x in range(full_arr.shape[0]):
            for y in range(full_arr.shape[1]):
                if len(domain_size) == 3:
                    for z in range(full_arr.shape[2]):
                        assert full_arr[x, y, z] == x + y + z
                else:
                    assert len(domain_size) == 2
                    assert full_arr[x, y] == x + y


def synchronization(dh, test_gpu=False):
    field_name = 'comm_field_test'
    if test_gpu:
        try:
            from pycuda import driver
            import pycuda.autoinit
        except ImportError:
            return
        field_name += 'Gpu'

    dh.add_array(field_name, ghost_layers=1, dtype=np.int32, cpu=True, gpu=test_gpu)

    # initialize everything with 1
    for b in dh.iterate(ghost_layers=1):
        b[field_name].fill(1)
    for b in dh.iterate(ghost_layers=0):
        b[field_name].fill(42)

    if test_gpu:
        dh.to_gpu(field_name)

    dh.synchronization_function(field_name, target='gpu' if test_gpu else 'cpu')()

    if test_gpu:
        dh.to_cpu(field_name)

    for b in dh.iterate(ghost_layers=1):
        np.testing.assert_equal(42, b[field_name])


109
def kernel_execution_jacobi(dh, target):
110

111
    test_gpu = target == 'gpu' or target == 'opencl'
112
113
    dh.add_array('f', gpu=test_gpu)
    dh.add_array('tmp', gpu=test_gpu)
114
115
116
117
118

    if test_gpu:
        assert dh.is_on_gpu('f')
        assert dh.is_on_gpu('tmp')

119
120
121
122
123
124
125
126
    stencil_2d = [(1, 0), (-1, 0), (0, 1), (0, -1)]
    stencil_3d = [(1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 1), (0, 0, -1)]
    stencil = stencil_2d if dh.dim == 2 else stencil_3d

    @ps.kernel
    def jacobi():
        dh.fields.tmp.center @= sum(dh.fields.f.neighbors(stencil)) / len(stencil)

127
    kernel = create_kernel(jacobi, target).compile()
128
129
130
131
132
133
134
135
    for b in dh.iterate(ghost_layers=1):
        b['f'].fill(42)
    dh.run_kernel(kernel)
    for b in dh.iterate(ghost_layers=0):
        np.testing.assert_equal(b['f'], 42)


def vtk_output(dh):
Michael Kuron's avatar
Michael Kuron committed
136
    pytest.importorskip('pyevtk')
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
    dh.add_array('scalar_field')
    dh.add_array('vector_field', values_per_cell=dh.dim)
    dh.add_array('multiple_scalar_field', values_per_cell=9)
    dh.add_array('flag_field', dtype=np.uint16)

    fields_names = ['scalar_field', 'vector_field', 'multiple_scalar_field', 'flag_field']
    with TemporaryDirectory() as tmp_dir:
        writer1 = dh.create_vtk_writer(os.path.join(tmp_dir, "out1"), fields_names, ghost_layers=True)
        writer2 = dh.create_vtk_writer(os.path.join(tmp_dir, "out2"), fields_names, ghost_layers=False)
        masks_to_name = {1: 'flag1', 5: 'some_mask'}
        writer3 = dh.create_vtk_writer_for_flag_array(os.path.join(tmp_dir, "out3"), 'flag_field', masks_to_name)
        writer1(1)
        writer2(1)
        writer3(1)


def reduction(dh):
    float_seq = [1.0, 2.0, 3.0]
    int_seq = [1, 2, 3]
    for op in ('min', 'max', 'sum'):
        assert (dh.reduce_float_sequence(float_seq, op) == float_seq).all()
        assert (dh.reduce_int_sequence(int_seq, op) == int_seq).all()


def test_symbolic_fields():
    dh = create_data_handling(domain_size=(5, 7))
    dh.add_array('f1', values_per_cell=dh.dim)
    assert dh.fields['f1'].spatial_dimensions == dh.dim
    assert dh.fields['f1'].index_dimensions == 1

    dh.add_array_like("f_tmp", "f1", latex_name=r"f_{tmp}")
    assert dh.fields['f_tmp'].spatial_dimensions == dh.dim
    assert dh.fields['f_tmp'].index_dimensions == 1

    dh.swap('f1', 'f_tmp')


def test_access():
    for domain_shape in [(2, 3, 4), (2, 4)]:
        for f_size in (1, 4):
            dh = create_data_handling(domain_size=domain_shape)
            dh.add_array('f1', values_per_cell=f_size)
            assert dh.dim == len(domain_shape)

            for b in dh.iterate(ghost_layers=1):
                if f_size > 1:
                    assert b['f1'].shape == tuple(ds+2 for ds in domain_shape) + (f_size,)
                else:
                    assert b['f1'].shape == tuple(ds + 2 for ds in domain_shape)

            for b in dh.iterate(ghost_layers=0):
                if f_size > 1:
                    assert b['f1'].shape == domain_shape + (f_size,)
                else:
                    assert b['f1'].shape == domain_shape


def test_access_and_gather():
    for domain_shape in [(2, 2, 3), (2, 3)]:
        dh = create_data_handling(domain_size=domain_shape, periodicity=True)
        access_and_gather(dh, domain_shape)
        synchronization(dh, test_gpu=False)
        synchronization(dh, test_gpu=True)


def test_kernel():
    for domain_shape in [(4, 5), (3, 4, 5)]:
        dh = create_data_handling(domain_size=domain_shape, periodicity=True)
205
        assert all(dh.periodicity)
206
        kernel_execution_jacobi(dh, 'cpu')
207
208
        reduction(dh)

Martin Bauer's avatar
Martin Bauer committed
209
210
211
        try:
            import pycuda
            dh = create_data_handling(domain_size=domain_shape, periodicity=True)
212
            kernel_execution_jacobi(dh, 'gpu')
Martin Bauer's avatar
Martin Bauer committed
213
214
215
        except ImportError:
            pass

216

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
@pytest.mark.parametrize('target', ('cpu', 'gpu', 'opencl'))
def test_kernel_param(target):
    for domain_shape in [(4, 5), (3, 4, 5)]:
        if target == 'gpu':
            pytest.importorskip('pycuda')
        if target == 'opencl':
            pytest.importorskip('pyopencl')
            from pystencils.opencl.opencljit import init_globally
            init_globally()

        dh = create_data_handling(domain_size=domain_shape, periodicity=True, default_target=target)
        kernel_execution_jacobi(dh, target)
        reduction(dh)


232
def test_vtk_output():
Michael Kuron's avatar
Michael Kuron committed
233
    pytest.importorskip('pyevtk')
234
235
236
    for domain_shape in [(4, 5), (3, 4, 5)]:
        dh = create_data_handling(domain_size=domain_shape, periodicity=True)
        vtk_output(dh)
Stephan Seitz's avatar
Stephan Seitz committed
237
238
239
240
241
242
243


def test_add_arrays():
    domain_shape = (3, 4, 5)
    field_description = 'x, y(9)'

    dh = create_data_handling(domain_size=domain_shape, default_ghost_layers=0, default_layout='numpy')
244
    x_, y_ = dh.add_arrays(field_description)
Stephan Seitz's avatar
Stephan Seitz committed
245
246
247

    x, y = ps.fields(field_description + ': [3,4,5]')

248
249
    assert x_ == x
    assert y_ == y
Stephan Seitz's avatar
Stephan Seitz committed
250
251
    assert x == dh.fields['x']
    assert y == dh.fields['y']
252
253
254
255
256
257
258
259
260
261
262


def test_get_kwarg():
    domain_shape = (10, 10)
    field_description = 'src, dst'

    dh = create_data_handling(domain_size=domain_shape, default_ghost_layers=1)
    src, dst = dh.add_arrays(field_description)
    dh.fill("src", 1.0, ghost_layers=True)
    dh.fill("dst", 0.0, ghost_layers=True)

Markus Holzer's avatar
Markus Holzer committed
263
264
265
    with pytest.raises(ValueError):
        dh.add_array('src')

266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    ur = ps.Assignment(src.center, dst.center)
    kernel = ps.create_kernel(ur).compile()

    kw = dh.get_kernel_kwargs(kernel)
    assert np.all(kw[0]['src'] == dh.cpu_arrays['src'])
    assert np.all(kw[0]['dst'] == dh.cpu_arrays['dst'])


def test_add_custom_data():
    pytest.importorskip('pycuda')

    import pycuda.gpuarray as gpuarray
    import pycuda.autoinit  # noqa

    def cpu_data_create_func():
        return np.ones((2, 2), dtype=np.float64)

    def gpu_data_create_func():
        return gpuarray.zeros((2, 2), dtype=np.float64)

    def cpu_to_gpu_transfer_func(gpuarr, cpuarray):
        gpuarr.set(cpuarray)

    def gpu_to_cpu_transfer_func(gpuarr, cpuarray):
        gpuarr.get(cpuarray)

    dh = create_data_handling(domain_size=(10, 10))
    dh.add_custom_data('custom_data',
                       cpu_data_create_func,
                       gpu_data_create_func,
                       cpu_to_gpu_transfer_func,
                       gpu_to_cpu_transfer_func)

    assert np.all(dh.custom_data_cpu['custom_data'] == 1)
    assert np.all(dh.custom_data_gpu['custom_data'].get() == 0)

    dh.to_cpu(name='custom_data')
    dh.to_gpu(name='custom_data')

    assert 'custom_data' in dh.custom_data_names


def test_log():
    dh = create_data_handling(domain_size=(10, 10))
    dh.log_on_root()
    assert dh.is_root
    assert dh.world_rank == 0
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353


def test_save_data():
    domain_shape = (2, 2)

    dh = create_data_handling(domain_size=domain_shape, default_ghost_layers=1)
    dh.add_array("src", values_per_cell=9)
    dh.fill("src", 1.0, ghost_layers=True)
    dh.add_array("dst", values_per_cell=9)
    dh.fill("dst", 1.0, ghost_layers=True)

    dh.save_all('test_data/datahandling_save_test')


def test_load_data():
    domain_shape = (2, 2)

    dh = create_data_handling(domain_size=domain_shape, default_ghost_layers=1)
    dh.add_array("src", values_per_cell=9)
    dh.fill("src", 0.0, ghost_layers=True)
    dh.add_array("dst", values_per_cell=9)
    dh.fill("dst", 0.0, ghost_layers=True)

    dh.load_all('test_data/datahandling_load_test')
    assert np.all(dh.cpu_arrays['src']) == 1
    assert np.all(dh.cpu_arrays['dst']) == 1

    domain_shape = (3, 3)

    dh = create_data_handling(domain_size=domain_shape, default_ghost_layers=1)
    dh.add_array("src", values_per_cell=9)
    dh.fill("src", 0.0, ghost_layers=True)
    dh.add_array("dst", values_per_cell=9)
    dh.fill("dst", 0.0, ghost_layers=True)
    dh.add_array("dst2", values_per_cell=9)
    dh.fill("dst2", 0.0, ghost_layers=True)

    dh.load_all('test_data/datahandling_load_test')
    assert np.all(dh.cpu_arrays['src']) == 0
    assert np.all(dh.cpu_arrays['dst']) == 0
    assert np.all(dh.cpu_arrays['dst2']) == 0