test_datahandling.py 9.91 KB
Newer Older
1
2
import os
from tempfile import TemporaryDirectory
Martin Bauer's avatar
Martin Bauer committed
3
4
5

import numpy as np

6
import pystencils as ps
Martin Bauer's avatar
Martin Bauer committed
7
from pystencils import create_data_handling, create_kernel
8

9
10
11
12
13
14
15
try:
    import pytest
except ImportError:
    import unittest.mock
    pytest = unittest.mock.MagicMock()


16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
def basic_iteration(dh):
    dh.add_array('basic_iter_test_gl_default')
    dh.add_array('basic_iter_test_gl_3', ghost_layers=3)

    for b in dh.iterate():
        assert b.shape == b['basic_iter_test_gl_3'].shape
        assert b.shape == b['basic_iter_test_gl_default'].shape


def access_and_gather(dh, domain_size):
    dh.add_array('f1', dtype=np.dtype(np.int32))
    dh.add_array_like('f2', 'f1')
    dh.add_array('v1', values_per_cell=3, dtype=np.int64, ghost_layers=2)
    dh.add_array_like('v2', 'v1')

    dh.swap('f1', 'f2')
    dh.swap('v1', 'v2')

    # Check symbolic field properties
    assert dh.fields.f1.index_dimensions == 0
    assert dh.fields.f1.spatial_dimensions == len(domain_size)
    assert dh.fields.f1.dtype.numpy_dtype == np.int32

    assert dh.fields.v1.index_dimensions == 1
    assert dh.fields.v1.spatial_dimensions == len(domain_size)
    assert dh.fields.v1.dtype.numpy_dtype == np.int64

    for b in dh.iterate(ghost_layers=0):
        val = sum(b.cell_index_arrays)
        np.copyto(b['f1'], val)
        for i, coord_arr in enumerate(b.cell_index_arrays):
            np.copyto(b['v1'][..., i], coord_arr)

    full_arr = dh.gather_array('v1')
    if full_arr is not None:
        expected_shape = domain_size + (3,)
        assert full_arr.shape == expected_shape
        for x in range(full_arr.shape[0]):
            for y in range(full_arr.shape[1]):
                if len(domain_size) == 3:
                    for z in range(full_arr.shape[2]):
                        assert full_arr[x, y, z, 0] == x
                        assert full_arr[x, y, z, 1] == y
                        assert full_arr[x, y, z, 2] == z
                else:
                    assert len(domain_size) == 2
                    assert full_arr[x, y, 0] == x
                    assert full_arr[x, y, 1] == y

    full_arr = dh.gather_array('f1')
    if full_arr is not None:
        expected_shape = domain_size
        assert full_arr.shape == expected_shape
        for x in range(full_arr.shape[0]):
            for y in range(full_arr.shape[1]):
                if len(domain_size) == 3:
                    for z in range(full_arr.shape[2]):
                        assert full_arr[x, y, z] == x + y + z
                else:
                    assert len(domain_size) == 2
                    assert full_arr[x, y] == x + y


def synchronization(dh, test_gpu=False):
    field_name = 'comm_field_test'
    if test_gpu:
        try:
            from pycuda import driver
            import pycuda.autoinit
        except ImportError:
            return
        field_name += 'Gpu'

    dh.add_array(field_name, ghost_layers=1, dtype=np.int32, cpu=True, gpu=test_gpu)

    # initialize everything with 1
    for b in dh.iterate(ghost_layers=1):
        b[field_name].fill(1)
    for b in dh.iterate(ghost_layers=0):
        b[field_name].fill(42)

    if test_gpu:
        dh.to_gpu(field_name)

    dh.synchronization_function(field_name, target='gpu' if test_gpu else 'cpu')()

    if test_gpu:
        dh.to_cpu(field_name)

    for b in dh.iterate(ghost_layers=1):
        np.testing.assert_equal(42, b[field_name])


109
def kernel_execution_jacobi(dh, target):
110

111
    test_gpu = target == 'gpu' or target == 'opencl'
112
113
    dh.add_array('f', gpu=test_gpu)
    dh.add_array('tmp', gpu=test_gpu)
114
115
116
117
118
119
120
121

    if test_gpu:
        assert dh.is_on_gpu('f')
        assert dh.is_on_gpu('tmp')

    with pytest.raises(ValueError):
        dh.add_array('f', gpu=test_gpu)

122
123
124
125
126
127
128
129
    stencil_2d = [(1, 0), (-1, 0), (0, 1), (0, -1)]
    stencil_3d = [(1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 1), (0, 0, -1)]
    stencil = stencil_2d if dh.dim == 2 else stencil_3d

    @ps.kernel
    def jacobi():
        dh.fields.tmp.center @= sum(dh.fields.f.neighbors(stencil)) / len(stencil)

130
    kernel = create_kernel(jacobi, target).compile()
131
132
133
134
135
136
137
138
    for b in dh.iterate(ghost_layers=1):
        b['f'].fill(42)
    dh.run_kernel(kernel)
    for b in dh.iterate(ghost_layers=0):
        np.testing.assert_equal(b['f'], 42)


def vtk_output(dh):
Michael Kuron's avatar
Michael Kuron committed
139
    pytest.importorskip('pyevtk')
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    dh.add_array('scalar_field')
    dh.add_array('vector_field', values_per_cell=dh.dim)
    dh.add_array('multiple_scalar_field', values_per_cell=9)
    dh.add_array('flag_field', dtype=np.uint16)

    fields_names = ['scalar_field', 'vector_field', 'multiple_scalar_field', 'flag_field']
    with TemporaryDirectory() as tmp_dir:
        writer1 = dh.create_vtk_writer(os.path.join(tmp_dir, "out1"), fields_names, ghost_layers=True)
        writer2 = dh.create_vtk_writer(os.path.join(tmp_dir, "out2"), fields_names, ghost_layers=False)
        masks_to_name = {1: 'flag1', 5: 'some_mask'}
        writer3 = dh.create_vtk_writer_for_flag_array(os.path.join(tmp_dir, "out3"), 'flag_field', masks_to_name)
        writer1(1)
        writer2(1)
        writer3(1)


def reduction(dh):
    float_seq = [1.0, 2.0, 3.0]
    int_seq = [1, 2, 3]
    for op in ('min', 'max', 'sum'):
        assert (dh.reduce_float_sequence(float_seq, op) == float_seq).all()
        assert (dh.reduce_int_sequence(int_seq, op) == int_seq).all()


def test_symbolic_fields():
    dh = create_data_handling(domain_size=(5, 7))
    dh.add_array('f1', values_per_cell=dh.dim)
    assert dh.fields['f1'].spatial_dimensions == dh.dim
    assert dh.fields['f1'].index_dimensions == 1

    dh.add_array_like("f_tmp", "f1", latex_name=r"f_{tmp}")
    assert dh.fields['f_tmp'].spatial_dimensions == dh.dim
    assert dh.fields['f_tmp'].index_dimensions == 1

    dh.swap('f1', 'f_tmp')


def test_access():
    for domain_shape in [(2, 3, 4), (2, 4)]:
        for f_size in (1, 4):
            dh = create_data_handling(domain_size=domain_shape)
            dh.add_array('f1', values_per_cell=f_size)
            assert dh.dim == len(domain_shape)

            for b in dh.iterate(ghost_layers=1):
                if f_size > 1:
                    assert b['f1'].shape == tuple(ds+2 for ds in domain_shape) + (f_size,)
                else:
                    assert b['f1'].shape == tuple(ds + 2 for ds in domain_shape)

            for b in dh.iterate(ghost_layers=0):
                if f_size > 1:
                    assert b['f1'].shape == domain_shape + (f_size,)
                else:
                    assert b['f1'].shape == domain_shape


def test_access_and_gather():
    for domain_shape in [(2, 2, 3), (2, 3)]:
        dh = create_data_handling(domain_size=domain_shape, periodicity=True)
        access_and_gather(dh, domain_shape)
        synchronization(dh, test_gpu=False)
        synchronization(dh, test_gpu=True)


def test_kernel():
    for domain_shape in [(4, 5), (3, 4, 5)]:
        dh = create_data_handling(domain_size=domain_shape, periodicity=True)
208
        assert all(dh.periodicity)
209
        kernel_execution_jacobi(dh, 'cpu')
210
211
        reduction(dh)

Martin Bauer's avatar
Martin Bauer committed
212
213
214
        try:
            import pycuda
            dh = create_data_handling(domain_size=domain_shape, periodicity=True)
215
            kernel_execution_jacobi(dh, 'gpu')
Martin Bauer's avatar
Martin Bauer committed
216
217
218
        except ImportError:
            pass

219

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
@pytest.mark.parametrize('target', ('cpu', 'gpu', 'opencl'))
def test_kernel_param(target):
    for domain_shape in [(4, 5), (3, 4, 5)]:
        if target == 'gpu':
            pytest.importorskip('pycuda')
        if target == 'opencl':
            pytest.importorskip('pyopencl')
            from pystencils.opencl.opencljit import init_globally
            init_globally()

        dh = create_data_handling(domain_size=domain_shape, periodicity=True, default_target=target)
        kernel_execution_jacobi(dh, target)
        reduction(dh)


235
def test_vtk_output():
Michael Kuron's avatar
Michael Kuron committed
236
    pytest.importorskip('pyevtk')
237
238
239
    for domain_shape in [(4, 5), (3, 4, 5)]:
        dh = create_data_handling(domain_size=domain_shape, periodicity=True)
        vtk_output(dh)
Stephan Seitz's avatar
Stephan Seitz committed
240
241
242
243
244
245
246


def test_add_arrays():
    domain_shape = (3, 4, 5)
    field_description = 'x, y(9)'

    dh = create_data_handling(domain_size=domain_shape, default_ghost_layers=0, default_layout='numpy')
247
    x_, y_ = dh.add_arrays(field_description)
Stephan Seitz's avatar
Stephan Seitz committed
248
249
250

    x, y = ps.fields(field_description + ': [3,4,5]')

251
252
    assert x_ == x
    assert y_ == y
Stephan Seitz's avatar
Stephan Seitz committed
253
254
    assert x == dh.fields['x']
    assert y == dh.fields['y']
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312


def test_get_kwarg():
    domain_shape = (10, 10)
    field_description = 'src, dst'

    dh = create_data_handling(domain_size=domain_shape, default_ghost_layers=1)
    src, dst = dh.add_arrays(field_description)
    dh.fill("src", 1.0, ghost_layers=True)
    dh.fill("dst", 0.0, ghost_layers=True)

    ur = ps.Assignment(src.center, dst.center)
    kernel = ps.create_kernel(ur).compile()

    kw = dh.get_kernel_kwargs(kernel)
    assert np.all(kw[0]['src'] == dh.cpu_arrays['src'])
    assert np.all(kw[0]['dst'] == dh.cpu_arrays['dst'])


def test_add_custom_data():
    pytest.importorskip('pycuda')

    import pycuda.gpuarray as gpuarray
    import pycuda.autoinit  # noqa

    def cpu_data_create_func():
        return np.ones((2, 2), dtype=np.float64)

    def gpu_data_create_func():
        return gpuarray.zeros((2, 2), dtype=np.float64)

    def cpu_to_gpu_transfer_func(gpuarr, cpuarray):
        gpuarr.set(cpuarray)

    def gpu_to_cpu_transfer_func(gpuarr, cpuarray):
        gpuarr.get(cpuarray)

    dh = create_data_handling(domain_size=(10, 10))
    dh.add_custom_data('custom_data',
                       cpu_data_create_func,
                       gpu_data_create_func,
                       cpu_to_gpu_transfer_func,
                       gpu_to_cpu_transfer_func)

    assert np.all(dh.custom_data_cpu['custom_data'] == 1)
    assert np.all(dh.custom_data_gpu['custom_data'].get() == 0)

    dh.to_cpu(name='custom_data')
    dh.to_gpu(name='custom_data')

    assert 'custom_data' in dh.custom_data_names


def test_log():
    dh = create_data_handling(domain_size=(10, 10))
    dh.log_on_root()
    assert dh.is_root
    assert dh.world_rank == 0