test_datahandling.py 7.62 KB
Newer Older
1
2
import os
from tempfile import TemporaryDirectory
Martin Bauer's avatar
Martin Bauer committed
3
4
5

import numpy as np

6
import pystencils as ps
Martin Bauer's avatar
Martin Bauer committed
7
from pystencils import create_data_handling, create_kernel
8

9
10
11
12
13
14
15
try:
    import pytest
except ImportError:
    import unittest.mock
    pytest = unittest.mock.MagicMock()


16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

def basic_iteration(dh):
    dh.add_array('basic_iter_test_gl_default')
    dh.add_array('basic_iter_test_gl_3', ghost_layers=3)

    for b in dh.iterate():
        assert b.shape == b['basic_iter_test_gl_3'].shape
        assert b.shape == b['basic_iter_test_gl_default'].shape


def access_and_gather(dh, domain_size):
    dh.add_array('f1', dtype=np.dtype(np.int32))
    dh.add_array_like('f2', 'f1')
    dh.add_array('v1', values_per_cell=3, dtype=np.int64, ghost_layers=2)
    dh.add_array_like('v2', 'v1')

    dh.swap('f1', 'f2')
    dh.swap('v1', 'v2')

    # Check symbolic field properties
    assert dh.fields.f1.index_dimensions == 0
    assert dh.fields.f1.spatial_dimensions == len(domain_size)
    assert dh.fields.f1.dtype.numpy_dtype == np.int32

    assert dh.fields.v1.index_dimensions == 1
    assert dh.fields.v1.spatial_dimensions == len(domain_size)
    assert dh.fields.v1.dtype.numpy_dtype == np.int64

    for b in dh.iterate(ghost_layers=0):
        val = sum(b.cell_index_arrays)
        np.copyto(b['f1'], val)
        for i, coord_arr in enumerate(b.cell_index_arrays):
            np.copyto(b['v1'][..., i], coord_arr)

    full_arr = dh.gather_array('v1')
    if full_arr is not None:
        expected_shape = domain_size + (3,)
        assert full_arr.shape == expected_shape
        for x in range(full_arr.shape[0]):
            for y in range(full_arr.shape[1]):
                if len(domain_size) == 3:
                    for z in range(full_arr.shape[2]):
                        assert full_arr[x, y, z, 0] == x
                        assert full_arr[x, y, z, 1] == y
                        assert full_arr[x, y, z, 2] == z
                else:
                    assert len(domain_size) == 2
                    assert full_arr[x, y, 0] == x
                    assert full_arr[x, y, 1] == y

    full_arr = dh.gather_array('f1')
    if full_arr is not None:
        expected_shape = domain_size
        assert full_arr.shape == expected_shape
        for x in range(full_arr.shape[0]):
            for y in range(full_arr.shape[1]):
                if len(domain_size) == 3:
                    for z in range(full_arr.shape[2]):
                        assert full_arr[x, y, z] == x + y + z
                else:
                    assert len(domain_size) == 2
                    assert full_arr[x, y] == x + y


def synchronization(dh, test_gpu=False):
    field_name = 'comm_field_test'
    if test_gpu:
        try:
            from pycuda import driver
            import pycuda.autoinit
        except ImportError:
            return
        field_name += 'Gpu'

    dh.add_array(field_name, ghost_layers=1, dtype=np.int32, cpu=True, gpu=test_gpu)

    # initialize everything with 1
    for b in dh.iterate(ghost_layers=1):
        b[field_name].fill(1)
    for b in dh.iterate(ghost_layers=0):
        b[field_name].fill(42)

    if test_gpu:
        dh.to_gpu(field_name)

    dh.synchronization_function(field_name, target='gpu' if test_gpu else 'cpu')()

    if test_gpu:
        dh.to_cpu(field_name)

    for b in dh.iterate(ghost_layers=1):
        np.testing.assert_equal(42, b[field_name])


110
def kernel_execution_jacobi(dh, target):
111

112
    test_gpu = target == 'gpu' or target == 'opencl'
113
114
115
116
117
118
119
120
121
122
    dh.add_array('f', gpu=test_gpu)
    dh.add_array('tmp', gpu=test_gpu)
    stencil_2d = [(1, 0), (-1, 0), (0, 1), (0, -1)]
    stencil_3d = [(1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 1), (0, 0, -1)]
    stencil = stencil_2d if dh.dim == 2 else stencil_3d

    @ps.kernel
    def jacobi():
        dh.fields.tmp.center @= sum(dh.fields.f.neighbors(stencil)) / len(stencil)

123
    kernel = create_kernel(jacobi, target).compile()
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
    for b in dh.iterate(ghost_layers=1):
        b['f'].fill(42)
    dh.run_kernel(kernel)
    for b in dh.iterate(ghost_layers=0):
        np.testing.assert_equal(b['f'], 42)


def vtk_output(dh):
    dh.add_array('scalar_field')
    dh.add_array('vector_field', values_per_cell=dh.dim)
    dh.add_array('multiple_scalar_field', values_per_cell=9)
    dh.add_array('flag_field', dtype=np.uint16)

    fields_names = ['scalar_field', 'vector_field', 'multiple_scalar_field', 'flag_field']
    with TemporaryDirectory() as tmp_dir:
        writer1 = dh.create_vtk_writer(os.path.join(tmp_dir, "out1"), fields_names, ghost_layers=True)
        writer2 = dh.create_vtk_writer(os.path.join(tmp_dir, "out2"), fields_names, ghost_layers=False)
        masks_to_name = {1: 'flag1', 5: 'some_mask'}
        writer3 = dh.create_vtk_writer_for_flag_array(os.path.join(tmp_dir, "out3"), 'flag_field', masks_to_name)
        writer1(1)
        writer2(1)
        writer3(1)


def reduction(dh):
    float_seq = [1.0, 2.0, 3.0]
    int_seq = [1, 2, 3]
    for op in ('min', 'max', 'sum'):
        assert (dh.reduce_float_sequence(float_seq, op) == float_seq).all()
        assert (dh.reduce_int_sequence(int_seq, op) == int_seq).all()


def test_symbolic_fields():
    dh = create_data_handling(domain_size=(5, 7))
    dh.add_array('f1', values_per_cell=dh.dim)
    assert dh.fields['f1'].spatial_dimensions == dh.dim
    assert dh.fields['f1'].index_dimensions == 1

    dh.add_array_like("f_tmp", "f1", latex_name=r"f_{tmp}")
    assert dh.fields['f_tmp'].spatial_dimensions == dh.dim
    assert dh.fields['f_tmp'].index_dimensions == 1

    dh.swap('f1', 'f_tmp')


def test_access():
    for domain_shape in [(2, 3, 4), (2, 4)]:
        for f_size in (1, 4):
            dh = create_data_handling(domain_size=domain_shape)
            dh.add_array('f1', values_per_cell=f_size)
            assert dh.dim == len(domain_shape)

            for b in dh.iterate(ghost_layers=1):
                if f_size > 1:
                    assert b['f1'].shape == tuple(ds+2 for ds in domain_shape) + (f_size,)
                else:
                    assert b['f1'].shape == tuple(ds + 2 for ds in domain_shape)

            for b in dh.iterate(ghost_layers=0):
                if f_size > 1:
                    assert b['f1'].shape == domain_shape + (f_size,)
                else:
                    assert b['f1'].shape == domain_shape


def test_access_and_gather():
    for domain_shape in [(2, 2, 3), (2, 3)]:
        dh = create_data_handling(domain_size=domain_shape, periodicity=True)
        access_and_gather(dh, domain_shape)
        synchronization(dh, test_gpu=False)
        synchronization(dh, test_gpu=True)


def test_kernel():
    for domain_shape in [(4, 5), (3, 4, 5)]:
        dh = create_data_handling(domain_size=domain_shape, periodicity=True)
200
        kernel_execution_jacobi(dh, 'cpu')
201
202
        reduction(dh)

Martin Bauer's avatar
Martin Bauer committed
203
204
205
        try:
            import pycuda
            dh = create_data_handling(domain_size=domain_shape, periodicity=True)
206
            kernel_execution_jacobi(dh, 'gpu')
Martin Bauer's avatar
Martin Bauer committed
207
208
209
        except ImportError:
            pass

210

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
@pytest.mark.parametrize('target', ('cpu', 'gpu', 'opencl'))
def test_kernel_param(target):
    for domain_shape in [(4, 5), (3, 4, 5)]:
        if target == 'gpu':
            pytest.importorskip('pycuda')
        if target == 'opencl':
            pytest.importorskip('pyopencl')
            from pystencils.opencl.opencljit import init_globally
            init_globally()

        dh = create_data_handling(domain_size=domain_shape, periodicity=True, default_target=target)
        kernel_execution_jacobi(dh, target)
        reduction(dh)


226
227
228
229
def test_vtk_output():
    for domain_shape in [(4, 5), (3, 4, 5)]:
        dh = create_data_handling(domain_size=domain_shape, periodicity=True)
        vtk_output(dh)