Commit 35c029a0 authored by Markus Holzer's avatar Markus Holzer
Browse files

removed depricated as_matrix function

parent 0238f763
......@@ -172,18 +172,6 @@ class FiniteDifferenceStencilDerivation:
f = field_access
return sum(f.get_shifted(*offset) * weight for offset, weight in zip(self.stencil, self.weights))
def as_matrix(self):
warnings.warn("as_matrix is deprecated and may be removed in the near future."
"Please use as_array instead which will return an MutableDenseNDimArray."
"as_array therefore can also work in 3 dimensions", category=DeprecationWarning)
dim = len(self.stencil[0])
assert dim == 2
max_offset = max(max(abs(e) for e in direction) for direction in self.stencil)
result = sp.Matrix(2 * max_offset + 1, 2 * max_offset + 1, lambda i, j: 0)
for direction, weight in zip(self.stencil, self.weights):
result[max_offset - direction[1], max_offset + direction[0]] = weight
return result
def __array__(self):
return np.array(self.as_array().tolist())
......
......@@ -35,17 +35,17 @@
Finite difference stencil of accuracy 2, isotropic error: False
%% Cell type:code id: tags:
``` python
standard_2d_00.get_stencil().as_matrix()
standard_2d_00.get_stencil().as_array()
```
%%%% Output: execute_result
![]()
$$\left[\begin{matrix}0 & 0 & 0\\1 & -2 & 1\\0 & 0 & 0\end{matrix}\right]$$
![]()
$\displaystyle \left[\begin{matrix}0 & 0 & 0\\1 & -2 & 1\\0 & 0 & 0\end{matrix}\right]$
⎡0 0 0⎤
⎢ ⎥
⎢1 -2 1⎥
⎢ ⎥
⎣0 0 0⎦
......@@ -72,17 +72,17 @@
Finite difference stencil of accuracy 2, isotropic error: True
%% Cell type:code id: tags:
``` python
isotropic_2d_00_res.as_matrix()
isotropic_2d_00_res.as_array()
```
%%%% Output: execute_result
![]()
$$\left[\begin{matrix}\frac{1}{12} & - \frac{1}{6} & \frac{1}{12}\\\frac{5}{6} & - \frac{5}{3} & \frac{5}{6}\\\frac{1}{12} & - \frac{1}{6} & \frac{1}{12}\end{matrix}\right]$$
![]()
$\displaystyle \left[\begin{matrix}\frac{1}{12} & - \frac{1}{6} & \frac{1}{12}\\\frac{5}{6} & - \frac{5}{3} & \frac{5}{6}\\\frac{1}{12} & - \frac{1}{6} & \frac{1}{12}\end{matrix}\right]$
⎡1/12 -1/6 1/12⎤
⎢ ⎥
⎢5/6 -5/3 5/6 ⎥
⎢ ⎥
⎣1/12 -1/6 1/12⎦
......@@ -94,28 +94,28 @@
isotropic_2d_00_res.visualize()
```
%%%% Output: display_data
![]()
![]()
%% Cell type:code id: tags:
``` python
expected_result = sp.Matrix([[1, -2, 1], [10, -20, 10], [1, -2, 1]]) / 12
assert expected_result == isotropic_2d_00_res.as_matrix()
assert expected_result[:] == isotropic_2d_00_res.as_array()[:]
```
%% Cell type:code id: tags:
``` python
type(isotropic_2d_00_res.as_matrix())
type(isotropic_2d_00_res.as_array())
```
%%%% Output: execute_result
sympy.matrices.dense.MutableDenseMatrix
sympy.tensor.array.dense_ndim_array.MutableDenseNDimArray
%% Cell type:code id: tags:
``` python
type(expected_result)
......@@ -132,29 +132,29 @@
%% Cell type:code id: tags:
``` python
isotropic_2d_11 = FiniteDifferenceStencilDerivation((1,1), stencil)
isotropic_2d_11_res = isotropic_2d_11.get_stencil(isotropic=True)
iso_laplacian = isotropic_2d_00_res.as_matrix() + isotropic_2d_11_res.as_matrix()
iso_laplacian = isotropic_2d_00_res.as_array() + isotropic_2d_11_res.as_array()
iso_laplacian
```
%%%% Output: execute_result
![]()
$$\left[\begin{matrix}\frac{1}{6} & \frac{2}{3} & \frac{1}{6}\\\frac{2}{3} & - \frac{10}{3} & \frac{2}{3}\\\frac{1}{6} & \frac{2}{3} & \frac{1}{6}\end{matrix}\right]$$
![]()
$\displaystyle \left[\begin{matrix}\frac{1}{6} & \frac{2}{3} & \frac{1}{6}\\\frac{2}{3} & - \frac{10}{3} & \frac{2}{3}\\\frac{1}{6} & \frac{2}{3} & \frac{1}{6}\end{matrix}\right]$
⎡1/6 2/3 1/6⎤
⎢ ⎥
⎢2/3 -10/3 2/3⎥
⎢ ⎥
⎣1/6 2/3 1/6⎦
%% Cell type:code id: tags:
``` python
expected_result = sp.Matrix([[1, 4, 1], [4, -20, 4], [1, 4, 1]]) / 6
assert iso_laplacian == expected_result
assert iso_laplacian[:] == expected_result[:]
```
%% Cell type:markdown id: tags:
# stencils for staggered fields
......@@ -233,21 +233,15 @@
d.visualize()
```
%%%% Output: display_data
![]()
![]()
%% Cell type:code id: tags:
``` python
v3 = ps.fields("v(3): [3D]")
for i in range(*v3.index_shape):
assert FiniteDifferenceStaggeredStencilDerivation("E", 3, (0,)).apply(v3.center_vector[i]) == \
v3[1,0,0](i) - v3[0,0,0](i)
```
%% Cell type:code id: tags:
``` python
```
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment