Commit de3489c4 authored by Stephan Seitz's avatar Stephan Seitz
Browse files

Merge branch 'oldsympy' into 'master'

CI: Replace minimal-ubuntu job with ubuntu

Closes #19

See merge request pycodegen/pystencils!135
parents 1cabb407 f46b5976
......@@ -65,16 +65,21 @@ minimal-windows:
- python -c "import numpy"
- python setup.py quicktest
minimal-ubuntu:
ubuntu:
stage: test
except:
variables:
- $ENABLE_NIGHTLY_BUILDS
image: i10git.cs.fau.de:5005/pycodegen/pycodegen/minimal_ubuntu
image: i10git.cs.fau.de:5005/pycodegen/pycodegen/ubuntu
script:
- python3 setup.py quicktest
- mkdir -p ~/.config/matplotlib
- echo "backend:template" > ~/.config/matplotlib/matplotlibrc
- sed -i 's/--doctest-modules //g' pytest.ini
- pytest-3 -v -m "not longrun"
tags:
- docker
- cuda
- AVX
minimal-conda:
stage: test
......
......@@ -44,7 +44,7 @@ collect_ignore += [os.path.join(SCRIPT_FOLDER, "pystencils/autodiff.py")]
try:
import pycuda
except ImportError:
collect_ignore += [os.path.join(SCRIPT_FOLDER, "pystencils/pystencils_tests/test_cudagpu.py")]
collect_ignore += [os.path.join(SCRIPT_FOLDER, "pystencils_tests/test_cudagpu.py")]
add_path_to_ignore('pystencils/gpucuda')
try:
......@@ -73,7 +73,22 @@ try:
import blitzdb
except ImportError:
add_path_to_ignore('pystencils/runhelper')
collect_ignore += [os.path.join(SCRIPT_FOLDER, "pystencils_tests/test_parameterstudy.py")]
try:
import islpy
except ImportError:
collect_ignore += [os.path.join(SCRIPT_FOLDER, "pystencils/integer_set_analysis.py")]
try:
import graphviz
except ImportError:
collect_ignore += [os.path.join(SCRIPT_FOLDER, "pystencils/backends/dot.py")]
try:
import pyevtk
except ImportError:
collect_ignore += [os.path.join(SCRIPT_FOLDER, "pystencils/datahandling/vtk.py")]
collect_ignore += [os.path.join(SCRIPT_FOLDER, 'setup.py')]
......@@ -129,7 +144,7 @@ class IPyNbFile(pytest.File):
exporter.exclude_markdown = True
exporter.exclude_input_prompt = True
notebook_contents = self.fspath.open()
notebook_contents = self.fspath.open(encoding='utf-8')
with warnings.catch_warnings():
warnings.filterwarnings("ignore", "IPython.core.inputsplitter is deprecated")
......
......@@ -441,18 +441,22 @@
Now lets grab an image to apply this filter to:
%% Cell type:code id: tags:
``` python
import requests
import imageio
from io import BytesIO
try:
import requests
import imageio
from io import BytesIO
response = requests.get("https://www.python.org/static/img/python-logo.png")
img = imageio.imread(BytesIO(response.content)).astype(np.double)
img /= img.max()
plt.imshow(img);
response = requests.get("https://www.python.org/static/img/python-logo.png")
img = imageio.imread(BytesIO(response.content)).astype(np.double)
img /= img.max()
plt.imshow(img);
except ImportError:
print("No requests installed")
img = np.random.random((82, 290, 4))
```
%%%% Output: display_data
![]()
......
%% Cell type:code id: tags:
 
``` python
from pystencils.session import *
import shutil
```
 
%% Cell type:markdown id: tags:
 
# Plotting and Animation
......@@ -211,13 +213,16 @@
```
 
%% Cell type:code id: tags:
 
``` python
plt.figure()
animation = plt.scalar_field_animation(run_func, frames=60)
ps.jupyter.display_as_html_video(animation)
if shutil.which("ffmpeg") is not None:
plt.figure()
animation = plt.scalar_field_animation(run_func, frames=60)
ps.jupyter.display_as_html_video(animation)
else:
print("No ffmpeg installed")
```
 
%%%% Output: execute_result
 
<IPython.core.display.HTML object>
......@@ -243,12 +248,15 @@
For surface plots there is also an animated version:
 
%% Cell type:code id: tags:
 
``` python
animation = plt.surface_plot_animation(run_func, frames=60)
ps.jupyter.display_as_html_video(animation)
if shutil.which("ffmpeg") is not None:
animation = plt.surface_plot_animation(run_func, frames=60)
ps.jupyter.display_as_html_video(animation)
else:
print("No ffmpeg installed")
```
 
%%%% Output: execute_result
 
<IPython.core.display.HTML object>
......@@ -332,13 +340,16 @@
```
 
%% Cell type:code id: tags:
 
``` python
plt.figure()
animation = plt.vector_field_animation(run_func, frames=60)
ps.jupyter.display_as_html_video(animation)
if shutil.which("ffmpeg") is not None:
plt.figure()
animation = plt.vector_field_animation(run_func, frames=60)
ps.jupyter.display_as_html_video(animation)
else:
print("No ffmpeg installed")
```
 
%%%% Output: execute_result
 
<IPython.core.display.HTML object>
......@@ -348,12 +359,15 @@
...and magnitude plots
 
%% Cell type:code id: tags:
 
``` python
animation = plt.vector_field_magnitude_animation(run_func, frames=60)
ps.jupyter.display_as_html_video(animation)
if shutil.which("ffmpeg") is not None:
animation = plt.vector_field_magnitude_animation(run_func, frames=60)
ps.jupyter.display_as_html_video(animation)
else:
print("No ffmpeg installed")
```
 
%%%% Output: execute_result
 
<IPython.core.display.HTML object>
%% Cell type:code id: tags:
``` python
from pystencils.session import *
import shutil
```
%% Cell type:markdown id: tags:
# Demo: Finite differences - 2D wave equation
......@@ -183,12 +185,15 @@
Lets create an animation of the solution:
%% Cell type:code id: tags:
``` python
ani = plt.surface_plot_animation(run, zlim=(-1, 1))
ps.jupyter.display_as_html_video(ani)
if shutil.which("ffmpeg") is not None:
ani = plt.surface_plot_animation(run, zlim=(-1, 1))
ps.jupyter.display_as_html_video(ani)
else:
print("No ffmpeg installed")
```
%%%% Output: execute_result
<IPython.core.display.HTML object>
......@@ -230,13 +235,16 @@
for t in range(timesteps):
kernel(u0=u_arrays[0], u1=u_arrays[1], u2=u_arrays[2])
u_arrays[0], u_arrays[1], u_arrays[2] = u_arrays[1], u_arrays[2], u_arrays[0]
return u_arrays[2]
ani = plt.surface_plot_animation(run_LLVM, zlim=(-1, 1))
assert np.isfinite(np.max(u_arrays[2]))
ps.jupyter.display_as_html_video(ani)
if shutil.which("ffmpeg") is not None:
ani = plt.surface_plot_animation(run_LLVM, zlim=(-1, 1))
ps.jupyter.display_as_html_video(ani)
else:
print("No ffmpeg installed")
```
%%%% Output: execute_result
<IPython.core.display.HTML object>
......
......@@ -291,7 +291,10 @@ class Block(Node):
self._nodes = nodes
self.parent = None
for n in self._nodes:
n.parent = self
try:
n.parent = self
except AttributeError:
pass
@property
def args(self):
......
......@@ -387,6 +387,13 @@ class CustomSympyPrinter(CCodePrinter):
return self._print(expr.args[0])
elif isinstance(expr, fast_inv_sqrt):
return "({})".format(self._print(1 / sp.sqrt(expr.args[0])))
elif isinstance(expr, sp.Abs):
return "abs({})".format(self._print(expr.args[0]))
elif isinstance(expr, sp.Mod):
if expr.args[0].is_integer and expr.args[1].is_integer:
return "({} % {})".format(self._print(expr.args[0]), self._print(expr.args[1]))
else:
return "fmod({}, {})".format(self._print(expr.args[0]), self._print(expr.args[1]))
elif expr.func in infix_functions:
return "(%s %s %s)" % (self._print(expr.args[0]), infix_functions[expr.func], self._print(expr.args[1]))
elif expr.func == int_power_of_2:
......
......@@ -270,7 +270,8 @@ if( PyErr_Occurred() ) {{ return NULL; }}
template_extract_complex = """
PyObject * obj_{name} = PyDict_GetItemString(kwargs, "{name}");
if( obj_{name} == NULL) {{ PyErr_SetString(PyExc_TypeError, "Keyword argument '{name}' missing"); return NULL; }};
{target_type} {name}{{ {extract_function_real}( obj_{name} ), {extract_function_imag}( obj_{name} ) }};
{target_type} {name}{{ ({real_type}) {extract_function_real}( obj_{name} ),
({real_type}) {extract_function_imag}( obj_{name} ) }};
if( PyErr_Occurred() ) {{ return NULL; }}
"""
......@@ -409,6 +410,8 @@ def create_function_boilerplate_code(parameter_info, name, insert_checks=True):
pre_call_code += template_extract_complex.format(extract_function_real=extract_function[0],
extract_function_imag=extract_function[1],
target_type=target_type,
real_type="float" if target_type == "ComplexFloat"
else "double",
name=param.symbol.name)
else:
pre_call_code += template_extract_scalar.format(extract_function=extract_function,
......
......@@ -316,7 +316,8 @@ def expand_diff_full(expr, functions=None, constants=None):
functions.difference_update(constants)
def visit(e):
e = e.expand()
if not isinstance(e, sp.Tuple):
e = e.expand()
if e.func == Diff:
result = 0
......@@ -341,6 +342,9 @@ def expand_diff_full(expr, functions=None, constants=None):
return result
elif isinstance(e, sp.Piecewise):
return sp.Piecewise(*((expand_diff_full(a, functions, constants), b) for a, b in e.args))
elif isinstance(expr, sp.Tuple):
new_args = [visit(arg) for arg in e.args]
return sp.Tuple(*new_args)
else:
new_args = [visit(arg) for arg in e.args]
return e.func(*new_args) if new_args else e
......@@ -380,6 +384,9 @@ def expand_diff_linear(expr, functions=None, constants=None):
return diff.split_linear(functions)
elif isinstance(expr, sp.Piecewise):
return sp.Piecewise(*((expand_diff_linear(a, functions, constants), b) for a, b in expr.args))
elif isinstance(expr, sp.Tuple):
new_args = [expand_diff_linear(e, functions) for e in expr.args]
return sp.Tuple(*new_args)
else:
new_args = [expand_diff_linear(e, functions) for e in expr.args]
result = sp.expand(expr.func(*new_args) if new_args else expr)
......
......@@ -1173,53 +1173,53 @@ operator<<(std::basic_ostream<_CharT, _Traits> &__os, const complex<_Tp> &__x) {
template <class U, class V>
CUDA_CALLABLE_MEMBER auto operator*(const complex<U> &complexNumber,
const V &scalar) -> complex<U> {
return complex<U>{real(complexNumber) * scalar, imag(complexNumber) * scalar};
return complex<U>(real(complexNumber) * scalar, imag(complexNumber) * scalar);
}
template <class U, class V>
CUDA_CALLABLE_MEMBER auto operator*(const V &scalar,
const complex<U> &complexNumber)
-> complex<U> {
return complex<U>{real(complexNumber) * scalar, imag(complexNumber) * scalar};
return complex<U>(real(complexNumber) * scalar, imag(complexNumber) * scalar);
}
template <class U, class V>
CUDA_CALLABLE_MEMBER auto operator+(const complex<U> &complexNumber,
const V &scalar) -> complex<U> {
return complex<U>{real(complexNumber) + scalar, imag(complexNumber)};
return complex<U>(real(complexNumber) + scalar, imag(complexNumber));
}
template <class U, class V>
CUDA_CALLABLE_MEMBER auto operator+(const V &scalar,
const complex<U> &complexNumber)
-> complex<U> {
return complex<U>{real(complexNumber) + scalar, imag(complexNumber)};
return complex<U>(real(complexNumber) + scalar, imag(complexNumber));
}
template <class U, class V>
CUDA_CALLABLE_MEMBER auto operator-(const complex<U> &complexNumber,
const V &scalar) -> complex<U> {
return complex<U>{real(complexNumber) - scalar, imag(complexNumber)};
return complex<U>(real(complexNumber) - scalar, imag(complexNumber));
}
template <class U, class V>
CUDA_CALLABLE_MEMBER auto operator-(const V &scalar,
const complex<U> &complexNumber)
-> complex<U> {
return complex<U>{scalar - real(complexNumber), imag(complexNumber)};
return complex<U>(scalar - real(complexNumber), imag(complexNumber));
}
template <class U, class V>
CUDA_CALLABLE_MEMBER auto operator/(const complex<U> &complexNumber,
const V scalar) -> complex<U> {
return complex<U>{real(complexNumber) / scalar, imag(complexNumber) / scalar};
return complex<U>(real(complexNumber) / scalar, imag(complexNumber) / scalar);
}
template <class U, class V>
CUDA_CALLABLE_MEMBER auto operator/(const V scalar,
const complex<U> &complexNumber)
-> complex<U> {
return complex<U>{scalar, 0} / complexNumber;
return complex<U>(scalar, 0) / complexNumber;
}
using ComplexDouble = complex<double>;
......
......@@ -79,14 +79,14 @@ def create_kernel(assignments,
[0., 0., 0., 0., 0.]])
"""
# ---- Normalizing parameters
if isinstance(assignments, Assignment):
assignments = [assignments]
assert assignments, "Assignments must not be empty!"
split_groups = ()
if isinstance(assignments, AssignmentCollection):
if 'split_groups' in assignments.simplification_hints:
split_groups = assignments.simplification_hints['split_groups']
assignments = assignments.all_assignments
if isinstance(assignments, Assignment):
assignments = [assignments]
# ---- Creating ast
if target == 'cpu':
......
......@@ -3,6 +3,8 @@ from tempfile import TemporaryDirectory
import numpy as np
import pytest
from pystencils import Assignment, create_kernel
from pystencils.boundaries import BoundaryHandling, Neumann, add_neumann_boundary
from pystencils.datahandling import SerialDataHandling
......@@ -83,5 +85,6 @@ def test_kernel_vs_copy_boundary():
np.testing.assert_almost_equal(python_copy_result, handling_result)
with TemporaryDirectory() as tmp_dir:
pytest.importorskip('pyevtk')
boundary_handling.geometry_to_vtk(file_name=os.path.join(tmp_dir, 'test_output1'), ghost_layers=False)
boundary_handling.geometry_to_vtk(file_name=os.path.join(tmp_dir, 'test_output2'), ghost_layers=True)
......@@ -22,6 +22,7 @@ FIELD_SIZES = [(4, 3), (9, 3, 7)]
def _generate_fields(dt=np.uint8, stencil_directions=1, layout='numpy'):
pytest.importorskip('pycuda')
field_sizes = FIELD_SIZES
if stencil_directions > 1:
field_sizes = [s + (stencil_directions,) for s in field_sizes]
......@@ -44,7 +45,6 @@ def _generate_fields(dt=np.uint8, stencil_directions=1, layout='numpy'):
return fields
@pytest.mark.gpu
def test_full_scalar_field():
"""Tests fully (un)packing a scalar field (from)to a GPU buffer."""
fields = _generate_fields()
......@@ -73,7 +73,6 @@ def test_full_scalar_field():
np.testing.assert_equal(src_arr, dst_arr)
@pytest.mark.gpu
def test_field_slice():
"""Tests (un)packing slices of a scalar field (from)to a buffer."""
fields = _generate_fields()
......@@ -109,7 +108,6 @@ def test_field_slice():
np.testing.assert_equal(src_arr[pack_slice], dst_arr[unpack_slice])
@pytest.mark.gpu
def test_all_cell_values():
"""Tests (un)packing all cell values of the a field (from)to a buffer."""
num_cell_values = 7
......@@ -148,7 +146,6 @@ def test_all_cell_values():
np.testing.assert_equal(src_arr, dst_arr)
@pytest.mark.gpu
def test_subset_cell_values():
"""Tests (un)packing a subset of cell values of the a field (from)to a buffer."""
num_cell_values = 7
......@@ -190,7 +187,6 @@ def test_subset_cell_values():
np.testing.assert_equal(dst_arr, mask_arr.filled(int(0)))
@pytest.mark.gpu
def test_field_layouts():
num_cell_values = 7
for layout_str in ['numpy', 'fzyx', 'zyxf', 'reverse_numpy']:
......
......@@ -57,6 +57,9 @@ def test_complex_numbers(assignment, scalar_dtypes, target):
print(code)
assert "Not supported" not in code
if target == 'gpu':
pytest.importorskip('pycuda')
kernel = ast.compile()
assert kernel is not None
......@@ -100,6 +103,9 @@ def test_complex_numbers_64(assignment, target):
print(code)
assert "Not supported" not in code
if target == 'gpu':
pytest.importorskip('pycuda')
kernel = ast.compile()
assert kernel is not None
......@@ -125,6 +131,7 @@ def test_complex_execution(dtype, target, with_complex_argument):
})
if target == 'gpu':
pytest.importorskip('pycuda')
from pycuda.gpuarray import zeros
x_arr = zeros((20, 30), complex_dtype)
y_arr = zeros((20, 30), complex_dtype)
......
import sympy
import pytest
import pystencils
from pystencils.astnodes import get_dummy_symbol
from pystencils.backends.cuda_backend import CudaSympyPrinter
......@@ -18,6 +20,7 @@ def test_cuda_known_functions():
})
ast = pystencils.create_kernel(assignments, 'gpu')
pytest.importorskip('pycuda')
pystencils.show_code(ast)
kernel = ast.compile()
assert(kernel is not None)
......
......@@ -25,7 +25,7 @@ class ScreamingGpuBackend(CudaBackend):
return normal_code.upper()
def test_custom_backends():
def test_custom_backends_cpu():
z, x, y = pystencils.fields("z, y, x: [2d]")
normal_assignments = pystencils.AssignmentCollection([pystencils.Assignment(
......@@ -36,6 +36,16 @@ def test_custom_backends():
with pytest.raises(CalledProcessError):
pystencils.cpu.cpujit.make_python_function(ast, custom_backend=ScreamingBackend())
def test_custom_backends_gpu():
pytest.importorskip('pycuda')
import pycuda.driver
z, x, y = pystencils.fields("z, y, x: [2d]")
normal_assignments = pystencils.AssignmentCollection([pystencils.Assignment(
z[0, 0], x[0, 0] * sympy.log(x[0, 0] * y[0, 0]))], [])
ast = pystencils.create_kernel(normal_assignments, target='gpu')
pystencils.show_code(ast, ScreamingGpuBackend())
with pytest.raises(pycuda.driver.CompileError):
......
......@@ -128,6 +128,7 @@ def kernel_execution_jacobi(dh, target):
def vtk_output(dh):
pytest.importorskip('pyevtk')
dh.add_array('scalar_field')
dh.add_array('vector_field', values_per_cell=dh.dim)
dh.add_array('multiple_scalar_field', values_per_cell=9)
......@@ -223,6 +224,7 @@ def test_kernel_param(target):
def test_vtk_output():
pytest.importorskip('pyevtk')
for domain_shape in [(4, 5), (3, 4, 5)]:
dh = create_data_handling(domain_size=domain_shape, periodicity=True)
vtk_output(dh)
......
......@@ -44,7 +44,7 @@ def test_error_handling():
Field.create_generic('f', spatial_dimensions=2, index_dimensions=1, dtype=struct_dtype)
assert 'index dimension' in str(e.value)
arr = np.array([[1, 2.0, 3], [1, 2.0, 3]], dtype=struct_dtype)
arr = np.array([[[(1,)*3, (2,)*3, (3,)*3]]*2], dtype=struct_dtype)
Field.create_from_numpy_array('f', arr, index_dimensions=0)
with pytest.raises(ValueError) as e:
Field.create_from_numpy_array('f', arr, index_dimensions=1)
......
......@@ -14,8 +14,6 @@ import numpy as np
import pytest
import sympy
import pycuda.autoinit # NOQA
import pycuda.gpuarray as gpuarray
import pystencils
from pystencils.interpolation_astnodes import LinearInterpolator
from pystencils.spatial_coordinates import x_, y_
......@@ -51,7 +49,7 @@ def test_interpolation():
print(assignments)
ast = pystencils.create_kernel(assignments)
print(ast)
pystencils.show_code(ast)
print(pystencils.show_code(ast))
kernel = ast.compile()
pyconrad.imshow(lenna)
......@@ -71,7 +69,7 @@ def test_scale_interpolation():
print(assignments)
ast = pystencils.create_kernel(assignments)
print(ast)
pystencils.show_code(ast)
print(pystencils.show_code(ast))
kernel = ast.compile()
out = np.zeros_like(lenna)
......@@ -83,9 +81,9 @@ def test_scale_interpolation():
['border',
'clamp',
pytest.param('warp', marks=pytest.mark.xfail(
reason="Fails on newer SymPy version due to complex conjugate()")),
reason="requires interpolation-refactoring branch")),
pytest.param('mirror', marks=pytest.mark.xfail(
reason="Fails on newer SymPy version due to complex conjugate()")),
reason="requires interpolation-refactoring branch")),
])
def test_rotate_interpolation(address_mode):
"""
......@@ -102,7 +100,7 @@ def test_rotate_interpolation(address_mode):
print(assignments)
ast = pystencils.create_kernel(assignments)
print(ast)
pystencils.show_code(ast)
print(pystencils.show_code(ast))
kernel = ast.compile()