Commit ebfd56e1 by Markus Holzer

### fixed docstring bugs and expm1 optimisation

parent 35c029a0
 ... ... @@ -66,6 +66,7 @@ try: if int(sympy_version[0]) <= 1 and int(sympy_version[1]) <= 4: def hash_fun(self): return hash((self.lhs, self.rhs)) Assignment.__hash__ = hash_fun except Exception: pass ... ... @@ -94,16 +95,19 @@ def assignment_from_stencil(stencil_array, input_field, output_field, ... [0, 6, 0]] By default 'visual ordering is used - i.e. the stencil is applied as the nested lists are written down >>> assignment_from_stencil(stencil, f, g, order='visual') Assignment(g_C, 3*f_W + 6*f_S + 4*f_C + 2*f_N + 5*f_E) >>> expected_output = Assignment(g[0, 0], 3*f[-1, 0] + 6*f[0, -1] + 4*f[0, 0] + 2*f[0, 1] + 5*f[1, 0]) >>> assignment_from_stencil(stencil, f, g, order='visual') == expected_output True 'numpy' ordering uses the first coordinate of the stencil array for x offset, second for y offset etc. >>> assignment_from_stencil(stencil, f, g, order='numpy') Assignment(g_C, 2*f_W + 3*f_S + 4*f_C + 5*f_N + 6*f_E) >>> expected_output = Assignment(g[0, 0], 2*f[-1, 0] + 3*f[0, -1] + 4*f[0, 0] + 5*f[0, 1] + 6*f[1, 0]) >>> assignment_from_stencil(stencil, f, g, order='numpy') == expected_output True You can also pass field accesses to apply the stencil at an already shifted position: >>> assignment_from_stencil(stencil, f[1, 0], g[2, 0]) Assignment(g_2E, 3*f_C + 6*f_SE + 4*f_E + 2*f_NE + 5*f_2E) >>> expected_output = Assignment(g[2, 0], 3*f[0, 0] + 6*f[1, -1] + 4*f[1, 0] + 2*f[1, 1] + 5*f[2, 0]) >>> assignment_from_stencil(stencil, f[1, 0], g[2, 0]) == expected_output True """ from pystencils.field import Field ... ...
 import itertools import warnings from collections import defaultdict import numpy as np ... ...
 ... ... @@ -21,10 +21,13 @@ def diffusion(scalar, diffusion_coeff, idx=None): Examples: >>> f = Field.create_generic('f', spatial_dimensions=2) >>> d = sp.Symbol("d") >>> dx = sp.Symbol("dx") >>> diffusion_term = diffusion(scalar=f, diffusion_coeff=sp.Symbol("d")) >>> discretization = Discretization2ndOrder() >>> discretization(diffusion_term) (f_W*d + f_S*d - 4*f_C*d + f_N*d + f_E*d)/dx**2 >>> expected_output = ((f[-1, 0] + f[0, -1] - 4*f[0, 0] + f[0, 1] + f[1, 0]) * d) / dx**2 >>> sp.simplify(discretization(diffusion_term) - expected_output) 0 """ if isinstance(scalar, Field): first_arg = scalar.center ... ... @@ -313,8 +316,9 @@ def discretize_center(term, symbols_to_field_dict, dx, dim=3): >>> term x*x^Delta^0 >>> f = Field.create_generic('f', spatial_dimensions=3) >>> discretize_center(term, { x: f }, dx=1, dim=3) f_C*(-f_W/2 + f_E/2) >>> expected_output = f[0, 0, 0] * (-f[-1, 0, 0]/2 + f[1, 0, 0]/2) >>> sp.simplify(discretize_center(term, { x: f }, dx=1, dim=3) - expected_output) 0 """ substitutions = {} for symbols, field in symbols_to_field_dict.items(): ... ... @@ -396,8 +400,10 @@ def discretize_divergence(vector_term, symbols_to_field_dict, dx): >>> x, dx = sp.symbols("x dx") >>> grad_x = grad(x, dim=3) >>> f = Field.create_generic('f', spatial_dimensions=3) >>> sp.simplify(discretize_divergence(grad_x, {x : f}, dx)) (f_W + f_S + f_B - 6*f_C + f_T + f_N + f_E)/dx**2 >>> expected_output = (f[-1, 0, 0] + f[0, -1, 0] + f[0, 0, -1] - ... 6*f[0, 0, 0] + f[0, 0, 1] + f[0, 1, 0] + f[1, 0, 0])/dx**2 >>> sp.simplify(discretize_divergence(grad_x, {x : f}, dx) - expected_output) 0 """ dim = len(vector_term) result = 0 ... ...
 ... ... @@ -40,11 +40,11 @@ standard_2d_00.get_stencil().as_array()  %%%% Output: execute_result ![]() ![]() $\displaystyle \left[\begin{matrix}0 & 0 & 0\\1 & -2 & 1\\0 & 0 & 0\end{matrix}\right]$ ⎡0 0 0⎤ ⎢ ⎥ ⎢1 -2 1⎥ ⎢ ⎥ ... ... @@ -77,11 +77,11 @@ isotropic_2d_00_res.as_array()  %%%% Output: execute_result ![]() ![]() $\displaystyle \left[\begin{matrix}\frac{1}{12} & - \frac{1}{6} & \frac{1}{12}\\\frac{5}{6} & - \frac{5}{3} & \frac{5}{6}\\\frac{1}{12} & - \frac{1}{6} & \frac{1}{12}\end{matrix}\right]$ ⎡1/12 -1/6 1/12⎤ ⎢ ⎥ ⎢5/6 -5/3 5/6 ⎥ ⎢ ⎥ ... ... @@ -99,34 +99,14 @@ ![]() %% Cell type:code id: tags:  python expected_result = sp.Matrix([[1, -2, 1], [10, -20, 10], [1, -2, 1]]) / 12 assert expected_result[:] == isotropic_2d_00_res.as_array()[:] expected_result = sp.Array([[1, -2, 1], [10, -20, 10], [1, -2, 1]]) / 12 assert expected_result == isotropic_2d_00_res.as_array()  %% Cell type:code id: tags:  python type(isotropic_2d_00_res.as_array())  %%%% Output: execute_result sympy.tensor.array.dense_ndim_array.MutableDenseNDimArray %% Cell type:code id: tags:  python type(expected_result)  %%%% Output: execute_result sympy.matrices.dense.MutableDenseMatrix %% Cell type:markdown id: tags: ## Isotropic laplacian %% Cell type:code id: tags: ... ... @@ -138,23 +118,23 @@ iso_laplacian  %%%% Output: execute_result ![]() ![]() $\displaystyle \left[\begin{matrix}\frac{1}{6} & \frac{2}{3} & \frac{1}{6}\\\frac{2}{3} & - \frac{10}{3} & \frac{2}{3}\\\frac{1}{6} & \frac{2}{3} & \frac{1}{6}\end{matrix}\right]$ ⎡1/6 2/3 1/6⎤ ⎢ ⎥ ⎢2/3 -10/3 2/3⎥ ⎢ ⎥ ⎣1/6 2/3 1/6⎦ %% Cell type:code id: tags:  python expected_result = sp.Matrix([[1, 4, 1], [4, -20, 4], [1, 4, 1]]) / 6 assert iso_laplacian[:] == expected_result[:] expected_result = sp.Array([[1, 4, 1], [4, -20, 4], [1, 4, 1]]) / 6 assert iso_laplacian == expected_result ` %% Cell type:markdown id: tags: # stencils for staggered fields ... ...
 ... ... @@ -11,8 +11,11 @@ def test_sympy_optimizations(): x, y, z = pystencils.fields('x, y, z: float32[2d]') # Triggers Sympy's expm1 optimization # Sympy's expm1 optimization is tedious to use and the behaviour is highly depended on the sympy version. In # some cases the exp expression has to be encapsulated in brackets or multiplied with 1 or 1.0 # for sympy to work properly ... assignments = pystencils.AssignmentCollection({ x[0, 0]: sp.exp(y[0, 0]) - 1 x[0, 0]: 1.0 * (sp.exp(y[0, 0]) - 1) }) assignments = optimize_assignments(assignments, optims_pystencils_cpu) ... ... @@ -28,7 +31,7 @@ def test_evaluate_constant_terms(): for target in ('cpu', 'gpu'): x, y, z = pystencils.fields('x, y, z: float32[2d]') # Triggers Sympy's expm1 optimization # Triggers Sympy's cos optimization assignments = pystencils.AssignmentCollection({ x[0, 0]: -sp.cos(1) + y[0, 0] }) ... ... @@ -53,8 +56,6 @@ def test_do_not_evaluate_constant_terms(): x[0, 0]: -sp.cos(1) + y[0, 0] }) optimize_assignments(assignments, optimizations) ast = pystencils.create_kernel(assignments, target=target) code = pystencils.get_code_str(ast) assert 'cos(' in code ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!