Newer
Older
//======================================================================================================================
//
// This file is part of waLBerla. waLBerla is free software: you can
// redistribute it and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// waLBerla is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with waLBerla (see COPYING.txt). If not, see <http://www.gnu.org/licenses/>.
//
//! \file 03_AdvancedLBMCodegen.cpp
//! \author Frederik Hennig <frederik.hennig@fau.de>
//
//======================================================================================================================
#include "blockforest/all.h"
#include "core/all.h"
#include "domain_decomposition/all.h"
#include "field/all.h"
#include "geometry/all.h"
#include "lbm/vtk/VTKOutput.h"
#include "stencil/D2Q9.h"
#include "timeloop/all.h"
// Codegen Includes
#include "CumulantMRTNoSlip.h"
#include "CumulantMRTPackInfo.h"
#include "CumulantMRTSweep.h"
namespace walberla
{
///////////////////////
/// Typedef Aliases ///
///////////////////////
// Communication Pack Info
typedef pystencils::CumulantMRTPackInfo PackInfo_T;
// LB Method Stencil
typedef stencil::D2Q9 Stencil_T;
// PDF field type
typedef field::GhostLayerField< real_t, Stencil_T::Size > PdfField_T;
// Velocity Field Type
typedef field::GhostLayerField< real_t, Stencil_T::D > VectorField_T;
// Boundary Handling
typedef walberla::uint8_t flag_t;
typedef FlagField< flag_t > FlagField_T;
typedef lbm::CumulantMRTNoSlip NoSlip_T;
//////////////////////////////////////////
/// Shear Flow Velocity Initialization ///
//////////////////////////////////////////
void initShearFlowVelocityField(const shared_ptr< StructuredBlockForest >& blocks,
const BlockDataID& velocityFieldId,
math::RealRandom< real_t > rng(config.getParameter< std::mt19937::result_type >("noiseSeed", 42));
real_t velocityMagnitude = config.getParameter< real_t >("velocityMagnitude", real_c(0.08));
real_t noiseMagnitude = config.getParameter< real_t >("noiseMagnitude", real_c(0.1) * velocityMagnitude);
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
real_t n_y = real_c(blocks->getNumberOfYCells());
for (auto blockIt = blocks->begin(); blockIt != blocks->end(); ++blockIt)
{
auto u = (*blockIt).getData< VectorField_T >(velocityFieldId);
for (auto cellIt = u->beginWithGhostLayerXYZ(); cellIt != u->end(); ++cellIt)
{
Cell globalCell(cellIt.cell());
blocks->transformBlockLocalToGlobalCell(globalCell, *blockIt);
real_t relative_y = real_c(globalCell.y()) / n_y;
u->get(cellIt.cell(), 0) = relative_y < 0.3 || relative_y > 0.7 ? velocityMagnitude : -velocityMagnitude;
u->get(cellIt.cell(), 1) = noiseMagnitude * rng();
}
}
}
/////////////////////
/// Main Function ///
/////////////////////
int main(int argc, char** argv)
{
walberla::Environment walberlaEnv(argc, argv);
if (!walberlaEnv.config()) { WALBERLA_ABORT("No configuration file specified!"); }
///////////////////////////////////////////////////////
/// Block Storage Creation and Simulation Parameter ///
///////////////////////////////////////////////////////
auto blocks = blockforest::createUniformBlockGridFromConfig(walberlaEnv.config());
// read parameters
auto parameters = walberlaEnv.config()->getOneBlock("Parameters");
const uint_t timesteps = parameters.getParameter< uint_t >("timesteps", uint_c(10));
const real_t omega = parameters.getParameter< real_t >("omega", real_c(1.8));
const double remainingTimeLoggerFrequency =
parameters.getParameter< double >("remainingTimeLoggerFrequency", 3.0); // in seconds
////////////////////////////////////
/// PDF Field and Velocity Setup ///
////////////////////////////////////
BlockDataID velocityFieldId = field::addToStorage< VectorField_T >(blocks, "velocity", real_c(0.0), field::fzyx);
BlockDataID pdfFieldId = field::addToStorage< PdfField_T >(blocks, "pdf field", real_c(0.0), field::fzyx);
BlockDataID flagFieldId = field::addFlagFieldToStorage< FlagField_T >(blocks, "flag field");
auto shearFlowSetup = walberlaEnv.config()->getOneBlock("ShearFlowSetup");
initShearFlowVelocityField(blocks, velocityFieldId, shearFlowSetup);
real_t rho = shearFlowSetup.getParameter("rho", real_c(1.0));
// pdfs setup
pystencils::InitialPDFsSetter pdfSetter(pdfFieldId, velocityFieldId, rho);
for (auto blockIt = blocks->begin(); blockIt != blocks->end(); ++blockIt)
{
pdfSetter(&(*blockIt));
}
/////////////////////////
/// Boundary Handling ///
/////////////////////////
const FlagUID fluidFlagUID("Fluid");
auto boundariesConfig = walberlaEnv.config()->getOneBlock("Boundaries");
NoSlip_T noSlip(blocks, pdfFieldId);
geometry::initBoundaryHandling< FlagField_T >(*blocks, flagFieldId, boundariesConfig);
geometry::setNonBoundaryCellsToDomain< FlagField_T >(*blocks, flagFieldId, fluidFlagUID);
noSlip.fillFromFlagField< FlagField_T >(blocks, flagFieldId, FlagUID("NoSlip"), fluidFlagUID);
/////////////////
/// Time Loop ///
/////////////////
SweepTimeloop timeloop(blocks->getBlockStorage(), timesteps);
// Communication
blockforest::communication::UniformBufferedScheme< Stencil_T > communication(blocks);
communication.addPackInfo(make_shared< PackInfo_T >(pdfFieldId));
// Timeloop
timeloop.add() << BeforeFunction(communication, "communication") << Sweep(noSlip);
timeloop.add() << Sweep(pystencils::CumulantMRTSweep(pdfFieldId, velocityFieldId, omega));
// Stability Checker
timeloop.addFuncAfterTimeStep(makeSharedFunctor(field::makeStabilityChecker< PdfField_T, FlagField_T >(
walberlaEnv.config(), blocks, pdfFieldId, flagFieldId, fluidFlagUID)),
"LBM stability check");
// Time logger
timeloop.addFuncAfterTimeStep(timing::RemainingTimeLogger(timeloop.getNrOfTimeSteps(), remainingTimeLoggerFrequency),
"remaining time logger");
int vtkWriteFrequency = 100;
if (vtkWriteFrequency > 0)
{
const std::string path = "vtk_out/tut03";
auto vtkOutput = vtk::createVTKOutput_BlockData(*blocks, "cumulant_mrt_velocity_field", vtkWriteFrequency, 0,
false, path, "simulation_step", false, true, true, false, 0);
auto velWriter = make_shared< field::VTKWriter< VectorField_T > >(velocityFieldId, "Velocity");
vtkOutput->addCellDataWriter(velWriter);
timeloop.addFuncBeforeTimeStep(vtk::writeFiles(vtkOutput), "VTK Output");
}
timeloop.run();
return EXIT_SUCCESS;
}
} // namespace walberla
int main(int argc, char** argv) { return walberla::main(argc, argv); }