Newer
Older
from itertools import chain
import numpy as np
import sympy as sp
from sympy.core.cache import cacheit
from sympy.tensor import IndexedBase
from pystencils.types import TypedSymbol, createType
"""
With fields one can formulate stencil-like update rules on structured grids.
This Field class knows about the dimension, memory layout (strides) and optionally about the size of an array.
Creating Fields:
To create a field use one of the static create* members. There are two options:
1. create a kernel with fixed loop sizes i.e. the shape of the array is already known. This is usually the
case if just-in-time compilation directly from Python is done. (see :func:`Field.createFromNumpyArray`)
2. create a more general kernel that works for variable array sizes. This can be used to create kernels
beforehand for a library. (see :func:`Field.createGeneric`)
Dimensions:
A field has spatial and index dimensions, where the spatial dimensions come first.
The interpretation is that the field has multiple cells in (usually) two or three dimensional space which are
looped over. Additionally N values are stored per cell. In this case spatialDimensions is two or three,
and indexDimensions equals N. If you want to store a matrix on each point in a two dimensional grid, there
are four dimensions, two spatial and two index dimensions: ``len(arr.shape) == spatialDims + indexDims``
Indexing:
When accessing (indexing) a field the result is a FieldAccess which is derived from sympy Symbol.
First specify the spatial offsets in [], then in case indexDimension>0 the indices in ()
Example without index dimensions:
>>> a = np.zeros([10, 10])
>>> f = Field.createFromNumpyArray("f", a, indexDimensions=0)
>>> jacobi = ( f[-1,0] + f[1,0] + f[0,-1] + f[0,1] ) / 4
Example with index dimensions: LBM D2Q9 stream pull
>>> stencil = np.array([[0,0], [0,1], [0,-1]])
>>> src = Field.createGeneric("src", spatialDimensions=2, indexDimensions=1)
>>> dst = Field.createGeneric("dst", spatialDimensions=2, indexDimensions=1)
>>> for i, offset in enumerate(stencil):
... sp.Eq(dst[0,0](i), src[-offset](i))
Eq(dst_C^0, src_C^0)
Eq(dst_C^1, src_S^1)
Eq(dst_C^2, src_N^2)
"""
@staticmethod
def createGeneric(fieldName, spatialDimensions, dtype=np.float64, indexDimensions=0, layout='numpy'):
"""
Creates a generic field where the field size is not fixed i.e. can be called with arrays of different sizes
:param fieldName: symbolic name for the field
:param dtype: numpy data type of the array the kernel is called with later
:param spatialDimensions: see documentation of Field
:param indexDimensions: see documentation of Field
:param layout: tuple specifying the loop ordering of the spatial dimensions e.g. (2, 1, 0 ) means that
the outer loop loops over dimension 2, the second outer over dimension 1, and the inner loop
over dimension 0. Also allowed: the strings 'numpy' (0,1,..d) or 'reverseNumpy' (d, ..., 1, 0)
"""
if isinstance(layout, str) and (layout == 'numpy' or layout.lower() == 'c'):
layout = tuple(range(spatialDimensions))
elif isinstance(layout, str) and (layout == 'reverseNumpy' or layout.lower() == 'f'):
layout = tuple(reversed(range(spatialDimensions)))
if len(layout) != spatialDimensions:
raise ValueError("Layout")
shapeSymbol = IndexedBase(TypedSymbol(Field.SHAPE_PREFIX + fieldName, Field.SHAPE_DTYPE), shape=(1,))
strideSymbol = IndexedBase(TypedSymbol(Field.STRIDE_PREFIX + fieldName, Field.STRIDE_DTYPE), shape=(1,))
totalDimensions = spatialDimensions + indexDimensions
shape = tuple([shapeSymbol[i] for i in range(totalDimensions)])
strides = tuple([strideSymbol[i] for i in range(totalDimensions)])
npDataType = np.dtype(dtype)
if npDataType.fields is not None:
if indexDimensions != 0:
raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
shape += (1,)
strides += (1,)
return Field(fieldName, dtype, layout, shape, strides)
@staticmethod
def createFromNumpyArray(fieldName, npArray, indexDimensions=0):
"""
Creates a field based on the layout, data type, and shape of a given numpy array.
Kernels created for these kind of fields can only be called with arrays of the same layout, shape and type.
:param fieldName: symbolic name for the field
:param npArray: numpy array
:param indexDimensions: see documentation of Field
"""
spatialDimensions = len(npArray.shape) - indexDimensions
if spatialDimensions < 1:
raise ValueError("Too many index dimensions. At least one spatial dimension required")
fullLayout = getLayoutOfArray(npArray)
spatialLayout = tuple([i for i in fullLayout if i < spatialDimensions])
assert len(spatialLayout) == spatialDimensions
strides = tuple([s // np.dtype(npArray.dtype).itemsize for s in npArray.strides])
shape = tuple(int(s) for s in npArray.shape)
npDataType = np.dtype(npArray.dtype)
if npDataType.fields is not None:
if indexDimensions != 0:
raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
shape += (1,)
strides += (1,)
return Field(fieldName, npArray.dtype, spatialLayout, shape, strides)
@staticmethod
def createFixedSize(fieldName, shape, indexDimensions=0, dtype=np.float64, layout='numpy'):
Creates a field with fixed sizes i.e. can be called only with arrays of the same size and layout
:param fieldName: symbolic name for the field
:param shape: overall shape of the array
:param indexDimensions: how many of the trailing dimensions are interpreted as index (as opposed to spatial)
:param dtype: numpy data type of the array the kernel is called with later
:param layout: full layout of array, not only spatial dimensions
spatialDimensions = len(shape) - indexDimensions
assert spatialDimensions >= 1
if isinstance(layout, str) and (layout == 'numpy' or layout.lower() == 'c'):
layout = tuple(range(spatialDimensions))
elif isinstance(layout, str) and (layout == 'reverseNumpy' or layout.lower() == 'f'):
shape = tuple(int(s) for s in shape)
strides = computeStrides(shape, layout)
npDataType = np.dtype(dtype)
if npDataType.fields is not None:
if indexDimensions != 0:
raise ValueError("Structured arrays/fields are not allowed to have an index dimension")
shape += (1,)
strides += (1,)
spatialLayout = list(layout)
for i in range(spatialDimensions, len(layout)):
spatialLayout.remove(i)
return Field(fieldName, dtype, tuple(spatialLayout), shape, strides)
def __init__(self, fieldName, dtype, layout, shape, strides):
"""Do not use directly. Use static create* methods"""
self._fieldName = fieldName
self._layout = normalizeLayout(layout)
self.shape = shape
self.strides = strides
# index fields are currently only used for boundary handling
# the coordinates are not the loop counters in that case, but are read from this index field
self.isIndexField = False
@property
def spatialDimensions(self):
return len(self._layout)
@property
def indexDimensions(self):
return len(self.shape) - len(self._layout)
@property
def layout(self):
return self._layout
@property
def name(self):
return self._fieldName
@property
def spatialShape(self):
return self.shape[:self.spatialDimensions]
@property
def hasFixedShape(self):
try:
[int(i) for i in self.shape]
return True
except TypeError:
return False
return self.shape[self.spatialDimensions:]
@property
def spatialStrides(self):
return self.strides[:self.spatialDimensions]
@property
def indexStrides(self):
return self.strides[self.spatialDimensions:]
@property
def dtype(self):
return self._dtype
def __repr__(self):
return self._fieldName
def neighbor(self, coordId, offset):
offsetList = [0] * self.spatialDimensions
offsetList[coordId] = offset
return Field.Access(self, tuple(offsetList))
def __getitem__(self, offset):
if type(offset) is np.ndarray:
offset = tuple(offset)
if type(offset) is str:
offset = tuple(directionStringToOffset(offset, self.spatialDimensions))
if type(offset) is not tuple:
offset = (offset,)
if len(offset) != self.spatialDimensions:
raise ValueError("Wrong number of spatial indices: "
"Got %d, expected %d" % (len(offset), self.spatialDimensions))
return Field.Access(self, offset)
def __call__(self, *args, **kwargs):
center = tuple([0]*self.spatialDimensions)
return Field.Access(self, center)(*args, **kwargs)
def __hash__(self):
return hash((self._layout, self.shape, self.strides, self._dtype, self._fieldName))
def __eq__(self, other):
selfTuple = (self.shape, self.strides, self.name, self.dtype)
otherTuple = (other.shape, other.strides, other.name, other.dtype)
return selfTuple == otherTuple
PREFIX = "f"
STRIDE_PREFIX = PREFIX + "stride_"
SHAPE_PREFIX = PREFIX + "shape_"
STRIDE_DTYPE = "const int *"
SHAPE_DTYPE = "const int *"
DATA_PREFIX = PREFIX + "d_"
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
class Access(sp.Symbol):
def __new__(cls, name, *args, **kwargs):
obj = Field.Access.__xnew_cached_(cls, name, *args, **kwargs)
return obj
def __new_stage2__(self, field, offsets=(0, 0, 0), idx=None):
fieldName = field.name
offsetsAndIndex = chain(offsets, idx) if idx is not None else offsets
constantOffsets = not any([isinstance(o, sp.Basic) for o in offsetsAndIndex])
if not idx:
idx = tuple([0] * field.indexDimensions)
if constantOffsets:
offsetName = offsetToDirectionString(offsets)
if field.indexDimensions == 0:
obj = super(Field.Access, self).__xnew__(self, fieldName + "_" + offsetName)
elif field.indexDimensions == 1:
obj = super(Field.Access, self).__xnew__(self, fieldName + "_" + offsetName + "^" + str(idx[0]))
else:
idxStr = ",".join([str(e) for e in idx])
obj = super(Field.Access, self).__xnew__(self, fieldName + "_" + offsetName + "^" + idxStr)
else:
offsetName = "%0.10X" % (abs(hash(tuple(offsetsAndIndex))))
obj = super(Field.Access, self).__xnew__(self, fieldName + "_" + offsetName)
obj._field = field
obj._offsets = []
for o in offsets:
if isinstance(o, sp.Basic):
obj._offsets.append(o)
else:
obj._offsets.append(int(o))
obj._offsetName = offsetName
obj._index = idx
return obj
def __getnewargs__(self):
return self.field, self.offsets, self.index
__xnew__ = staticmethod(__new_stage2__)
__xnew_cached_ = staticmethod(cacheit(__new_stage2__))
def __call__(self, *idx):
if self._index != tuple([0]*self.field.indexDimensions):
print(self._index, tuple([0]*self.field.indexDimensions))
raise ValueError("Indexing an already indexed Field.Access")
idx = tuple(idx)
if len(idx) != self.field.indexDimensions and idx != (0,):
raise ValueError("Wrong number of indices: "
"Got %d, expected %d" % (len(idx), self.field.indexDimensions))
return Field.Access(self.field, self._offsets, idx)
def __getitem__(self, *idx):
return self.__call__(*idx)
def __iter__(self):
"""This is necessary to work with parts of sympy that test if an object is iterable (e.g. simplify).
The __getitem__ would make it iterable"""
raise TypeError("Field access is not iterable")
@property
def field(self):
return self._field
@property
def offsets(self):
return self._offsets
@property
def requiredGhostLayers(self):
return int(np.max(np.abs(self._offsets)))
@property
def nrOfCoordinates(self):
return len(self._offsets)
@property
def offsetName(self):
return self._offsetName
@property
def index(self):
return self._index
def getNeighbor(self, *offsets):
return Field.Access(self.field, offsets, self.index)
def getShifted(self, *shift):
return Field.Access(self.field, tuple(a + b for a, b in zip(shift, self.offsets)), self.index)
def _hashable_content(self):
superClassContents = list(super(Field.Access, self)._hashable_content())
t = tuple(superClassContents + [hash(self._field), self._index] + self._offsets)
def extractCommonSubexpressions(equations):
"""
Uses sympy to find common subexpressions in equations and returns
them in a topologically sorted order, ready for evaluation.
Usually called before list of equations is passed to :func:`createKernel`
"""
replacements, newEq = sp.cse(equations)
# Workaround for older sympy versions: here subexpressions (temporary = True) are extracted
# which leads to problems in Piecewise functions which have to a default case indicated by True
symbolsEqualToTrue = {r[0]: True for r in replacements if r[1] is sp.true}
replacementEqs = [sp.Eq(*r) for r in replacements if r[1] is not sp.true]
equations = replacementEqs + newEq
topologicallySortedPairs = sp.cse_main.reps_toposort([[e.lhs, e.rhs] for e in equations])
equations = [sp.Eq(a[0], a[1].subs(symbolsEqualToTrue)) for a in topologicallySortedPairs]
def getLayoutOfArray(arr, indexDimensionIds=[]):
"""
Returns a list indicating the memory layout (linearization order) of the numpy array.
Example:
>>> getLayoutOfArray(np.zeros([3,3,3]))
In this example the loop over the zeroth coordinate should be the outermost loop,
followed by the first and second. Elements arr[x,y,0] and arr[x,y,1] are adjacent in memory.
Normally constructed numpy arrays have this order, however by stride tricks or other frameworks, arrays
with different memory layout can be created.
The indexDimensionIds parameter leaves specifies which coordinates should not be
"""
coordinates = list(range(len(arr.shape)))
relevantStrides = [stride for i, stride in enumerate(arr.strides) if i not in indexDimensionIds]
result = [x for (y, x) in sorted(zip(relevantStrides, coordinates), key=lambda pair: pair[0], reverse=True)]
return normalizeLayout(result)
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
def createNumpyArrayWithLayout(shape, layout):
"""
Creates a numpy array with
:param shape: shape of the resulting array
:param layout: layout as tuple, where the coordinates are ordered from slow to fast
>>> res = createNumpyArrayWithLayout(shape=(2, 3, 4, 5), layout=(3, 2, 0, 1))
>>> res.shape
(2, 3, 4, 5)
>>> getLayoutOfArray(res)
(3, 2, 0, 1)
"""
assert set(layout) == set(range(len(shape))), "Wrong layout descriptor"
currentLayout = list(range(len(shape)))
swaps = []
for i in range(len(layout)):
if currentLayout[i] != layout[i]:
indexToSwapWith = currentLayout.index(layout[i])
swaps.append((i, indexToSwapWith))
currentLayout[i], currentLayout[indexToSwapWith] = currentLayout[indexToSwapWith], currentLayout[i]
assert tuple(currentLayout) == tuple(layout)
shape = list(shape)
for a, b in swaps:
shape[a], shape[b] = shape[b], shape[a]
res = np.empty(shape, order='c')
for a, b in reversed(swaps):
res = res.swapaxes(a, b)
return res
def normalizeLayout(layout):
"""Takes a layout tuple and subtracts the minimum from all entries"""
minEntry = min(layout)
return tuple(i - minEntry for i in layout)
def computeStrides(shape, layout):
"""
Computes strides assuming no padding exists
:param shape: shape (size) of array
:param layout: layout specification as tuple
:return: strides in elements, not in bytes
"""
N = len(shape)
assert len(layout) == N
assert len(set(layout)) == N
strides = [0] * N
product = 1
for j in reversed(layout):
strides[j] = product
product *= shape[j]
return tuple(strides)
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
def offsetComponentToDirectionString(coordinateId, value):
"""
Translates numerical offset to string notation.
x offsets are labeled with east 'E' and 'W',
y offsets with north 'N' and 'S' and
z offsets with top 'T' and bottom 'B'
If the absolute value of the offset is bigger than 1, this number is prefixed.
:param coordinateId: integer 0, 1 or 2 standing for x,y and z
:param value: integer offset
Example:
>>> offsetComponentToDirectionString(0, 1)
'E'
>>> offsetComponentToDirectionString(1, 2)
'2N'
"""
nameComponents = (('W', 'E'), # west, east
('S', 'N'), # south, north
('B', 'T'), # bottom, top
)
if value == 0:
result = ""
elif value < 0:
result = nameComponents[coordinateId][0]
else:
result = nameComponents[coordinateId][1]
if abs(value) > 1:
result = "%d%s" % (abs(value), result)
return result
def offsetToDirectionString(offsetTuple):
"""
Translates numerical offset to string notation.
For details see :func:`offsetComponentToDirectionString`
:param offsetTuple: 3-tuple with x,y,z offset
Example:
>>> offsetToDirectionString([1, -1, 0])
'SE'
>>> offsetToDirectionString(([-3, 0, -2]))
'2B3W'
"""
names = ["", "", ""]
for i in range(len(offsetTuple)):
names[i] = offsetComponentToDirectionString(i, offsetTuple[i])
name = "".join(reversed(names))
if name == "":
name = "C"
return name
def directionStringToOffset(directionStr, dim=3):
"""
Reverse mapping of :func:`offsetToDirectionString`
:param directionStr: string representation of offset
:param dim: dimension of offset, i.e the length of the returned list
>>> directionStringToOffset('NW', dim=3)
array([-1, 1, 0])
>>> directionStringToOffset('NW', dim=2)
array([-1, 1])
>>> directionStringToOffset(offsetToDirectionString([3,-2,1]))
array([ 3, -2, 1])
"""
offsetMap = {
'C': np.array([0, 0, 0]),
'W': np.array([-1, 0, 0]),
'E': np.array([1, 0, 0]),
'S': np.array([0, -1, 0]),
'N': np.array([0, 1, 0]),
'B': np.array([0, 0, -1]),
'T': np.array([0, 0, 1]),
}
offset = np.array([0, 0, 0])
while len(directionStr) > 0:
factor = 1
firstNonDigit = 0
while directionStr[firstNonDigit].isdigit():
firstNonDigit += 1
if firstNonDigit > 0:
factor = int(directionStr[:firstNonDigit])
directionStr = directionStr[firstNonDigit:]
curOffset = offsetMap[directionStr[0]]
offset += factor * curOffset
directionStr = directionStr[1:]
return offset[:dim]