Skip to content
Snippets Groups Projects
Forked from pycodegen / pystencils
Loading
README.md 2.68 KiB

pystencils

Binder Docs pipeline status coverage report

Run blazingly fast stencil codes on numpy arrays.

pystencils uses sympy to define stencil operations, that can be executed on numpy arrays. Exploiting the stencil structure makes pystencils run faster than normal numpy code and even as Cython and numba, as demonstrated in this notebook.

Here is a code snippet that computes the average of neighboring cells:

import pystencils as ps
import numpy as np

f, g = ps.fields("f, g : [2D]")
stencil = ps.Assignment(g[0, 0],
                        (f[1, 0] + f[-1, 0] + f[0, 1] + f[0, -1]) / 4)
kernel = ps.create_kernel(stencil).compile()

f_arr = np.random.rand(1000, 1000)
g_arr = np.empty_like(f_arr)
kernel(f=f_arr, g=g_arr)

pystencils is mostly used for numerical simulations using finite difference or finite volume methods. It comes with automatic finite difference discretization for PDEs:

c, v = ps.fields("c, v(2): [2D]")
adv_diff_pde = ps.fd.transient(c) - ps.fd.diffusion(c, sp.symbols("D")) + ps.fd.advection(c, v)
discretize = ps.fd.Discretization2ndOrder(dx=1, dt=0.01)
discretization = discretize(adv_diff_pde)

Look at the documentation to learn more.

Installation