Commit f875fbc0 authored by Martin Bauer's avatar Martin Bauer
Browse files

Simplify constant square roots

parent d5c24d0f
......@@ -299,6 +299,9 @@ class CustomSympyPrinter(CCodePrinter):
def _print_Pow(self, expr):
"""Don't use std::pow function, for small integer exponents, write as multiplication"""
if not expr.free_symbols:
return self._typed_number(expr.evalf(), get_type_of_expression(expr))
if expr.exp.is_integer and expr.exp.is_number and 0 < expr.exp < 8:
return "(" + self._print(sp.Mul(*[expr.base] * expr.exp, evaluate=False)) + ")"
elif expr.exp.is_integer and expr.exp.is_number and - 8 < expr.exp < 0:
......
......@@ -70,6 +70,9 @@ class cast_func(sp.Function):
def is_commutative(self):
return self.args[0].is_commutative
def _eval_evalf(self, *args, **kwargs):
return self.args[0].evalf()
@property
def dtype(self):
return self.args[1]
......
......@@ -13,15 +13,15 @@
This notebook tests the model presented in the dentritic growth tutorial in 3D.
%% Cell type:code id: tags:
``` python
target = 'cpu'
target = 'gpu'
gpu = target == 'gpu'
domain_size = (25, 25, 25) if 'is_test_run' in globals() else (300, 300, 300)
dh = ps.create_data_handling(domain_size=domain_size, periodicity=True)
dh = ps.create_data_handling(domain_size=domain_size, periodicity=True, default_target=target)
φ_field = dh.add_array('phi', latex_name='φ')
φ_delta_field = dh.add_array('phidelta', latex_name='φ_D')
t_field = dh.add_array('T')
```
......@@ -62,24 +62,31 @@
εVal
```
%%%% Output: execute_result
$$\bar{\epsilon} \left(δ \left(\frac{{\partial_{0} {{φ}_{C}}}^{4}}{\left({\partial_{0} {{φ}_{C}}}^{2} + {\partial_{1} {{φ}_{C}}}^{2} + {\partial_{2} {{φ}_{C}}}^{2}\right)^{2}} + \frac{{\partial_{1} {{φ}_{C}}}^{4}}{\left({\partial_{0} {{φ}_{C}}}^{2} + {\partial_{1} {{φ}_{C}}}^{2} + {\partial_{2} {{φ}_{C}}}^{2}\right)^{2}} + \frac{{\partial_{2} {{φ}_{C}}}^{4}}{\left({\partial_{0} {{φ}_{C}}}^{2} + {\partial_{1} {{φ}_{C}}}^{2} + {\partial_{2} {{φ}_{C}}}^{2}\right)^{2}}\right) + 1\right)$$
⎛ ⎛ 4
⎜ ⎜ D(phi_C) D(phi_C
\bar{\epsilon}⋅⎜δ⋅⎜──────────────────────────────────── + ────────────────────
⎜ ⎜ 2
⎜ ⎜⎛ 2 2 2⎞ 2
⎝ ⎝⎝D(phi_C) + D(phi_C) + D(phi_C) ⎠ ⎝D(phi_C) + D(phi_C
$\displaystyle \bar{\epsilon} \left(δ \left(\frac{{\partial_{0} {{φ}_{(0,0,0)}}}^{4}}{\left({\partial_{0} {{φ}_{(0,0,0)}}}^{2} + {\partial_{1} {{φ}_{(0,0,0)}}}^{2} + {\partial_{2} {{φ}_{(0,0,0)}}}^{2}\right)^{2}} + \frac{{\partial_{1} {{φ}_{(0,0,0)}}}^{4}}{\left({\partial_{0} {{φ}_{(0,0,0)}}}^{2} + {\partial_{1} {{φ}_{(0,0,0)}}}^{2} + {\partial_{2} {{φ}_{(0,0,0)}}}^{2}\right)^{2}} + \frac{{\partial_{2} {{φ}_{(0,0,0)}}}^{4}}{\left({\partial_{0} {{φ}_{(0,0,0)}}}^{2} + {\partial_{1} {{φ}_{(0,0,0)}}}^{2} + {\partial_{2} {{φ}_{(0,0,0)}}}^{2}\right)^{2}}\right) + 1\right)$
⎛ ⎛ 4
⎜ ⎜ D(φ[0,0,0])
\bar{\epsilon}⋅⎜δ⋅⎜───────────────────────────────────────────── + ───────────
⎜ ⎜ 2
⎜ ⎜⎛ 2 2 2⎞
⎝ ⎝⎝D(φ[0,0,0]) + D(φ[0,0,0]) + D(φ[0,0,0]) ⎠ ⎝D(φ[0,0,0]
4 4 ⎞ ⎞
) D(phi_C) ⎟ ⎟
──────────────── + ────────────────────────────────────⎟ + 1⎟
2 2⎟ ⎟
2 2⎞ ⎛ 2 2 2⎞ ⎟ ⎟
) + D(phi_C) ⎠ ⎝D(phi_C) + D(phi_C) + D(phi_C) ⎠ ⎠ ⎠
4 4
D(φ[0,0,0]) D(φ[0,0,0])
────────────────────────────────── + ─────────────────────────────────────────
2
2 2 2⎞ ⎛ 2 2
) + D(φ[0,0,0]) + D(φ[0,0,0]) ⎠ ⎝D(φ[0,0,0]) + D(φ[0,0,0]) + D(φ[0,0,0]
⎞ ⎞
⎟ ⎟
────⎟ + 1⎟
2⎟ ⎟
2⎞ ⎟ ⎟
) ⎠ ⎠ ⎠
%% Cell type:code id: tags:
``` python
def m_func(temperature):
......@@ -123,12 +130,12 @@
parameters
```
%%%% Output: execute_result
![]()
$$\left \{ \pi : 3.14159265358979, \quad T_{eq} : 1.0, \quad \bar{\epsilon} : 0.01, \quad j : 6, \quad α : 0.9, \quad γ : 10, \quad δ : 0.3, \quad θ_{0} : 0.2, \quad κ : 1.8, \quad τ : 0.0003\right \}$$
![]()
$\displaystyle \left\{ \pi : 3.14159265358979, \ T_{eq} : 1.0, \ \bar{\epsilon} : 0.01, \ j : 6, \ α : 0.9, \ γ : 10, \ δ : 0.3, \ θ_{0} : 0.2, \ κ : 1.8, \ τ : 0.0003\right\}$
{π: 3.14159265358979, T_eq: 1.0, \bar{\epsilon}: 0.01, j: 6, α: 0.9, γ: 10, δ:
0.3, θ₀: 0.2, κ: 1.8, τ: 0.0003}
%% Cell type:code id: tags:
......@@ -153,14 +160,14 @@
temperatureEqs
```
%%%% Output: execute_result
$$\left [ {{T}_{C}} \leftarrow 0.0111111111111111 {{T}_{B}} + 0.933333333333333 {{T}_{C}} + 0.0111111111111111 {{T}_{E}} + 0.0111111111111111 {{T}_{N}} + 0.0111111111111111 {{T}_{S}} + 0.0111111111111111 {{T}_{T}} + 0.0111111111111111 {{T}_{W}} + 1.8 \cdot 10^{-5} {{φ_D}_{C}}\right ]$$
[T_C := 0.0111111111111111⋅T_B + 0.933333333333333⋅T_C + 0.0111111111111111⋅T_
E + 0.0111111111111111⋅T_N + 0.0111111111111111⋅T_S + 0.0111111111111111⋅T_T +
0.0111111111111111⋅T_W + 1.8e-5⋅phidelta_C]
$\displaystyle \left[ {{T}_{(0,0,0)}} \leftarrow 0.0111111111111111 {{T}_{(-1,0,0)}} + 0.0111111111111111 {{T}_{(0,-1,0)}} + 0.0111111111111111 {{T}_{(0,0,-1)}} + 0.933333333333333 {{T}_{(0,0,0)}} + 0.0111111111111111 {{T}_{(0,0,1)}} + 0.0111111111111111 {{T}_{(0,1,0)}} + 0.0111111111111111 {{T}_{(1,0,0)}} + 1.8 \cdot 10^{-5} {{φ_D}_{(0,0,0)}}\right]$
[T_C := 0.0111111111111111⋅T_W + 0.0111111111111111⋅T_S + 0.0111111111111111⋅T
_B + 0.933333333333333⋅T_C + 0.0111111111111111⋅T_T + 0.0111111111111111⋅T_N +
0.0111111111111111⋅T_E + 1.8e-5⋅phidelta_C]
%% Cell type:code id: tags:
``` python
φ_kernel = ps.create_kernel(φEqs, cpu_openmp=4, target=target).compile()
......@@ -214,21 +221,22 @@
print(dh)
```
%%%% Output: display_data
![]()
![]()
%% Cell type:code id: tags:
``` python
if 'is_test_run' in globals():
time_loop(2)
assert np.isfinite(dh.max('phi'))
assert np.isfinite(dh.max('T'))
assert np.isfinite(dh.max('phidelta'))
else:
from time import perf_counter
vtk_writer = dh.create_vtk_writer('dentritic_growth_large', ['phi'])
last = perf_counter()
for i in range(300):
time_loop(100)
vtk_writer(i)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment