Skip to content
Snippets Groups Projects
Commit ada89c01 authored by Markus Holzer's avatar Markus Holzer
Browse files

Merge branch 'fix-gpu-islices' into 'master'

Fix width-one iteration slices on GPU

See merge request pycodegen/pystencils!422
parents 3c0c4329 e3622192
No related merge requests found
Pipeline #69934 passed with stages
in 35 minutes and 5 seconds
......@@ -66,7 +66,8 @@ def create_cuda_kernel(assignments: NodeCollection, config: CreateKernelConfig):
iteration_space = normalize_slice(iteration_slice, common_shape)
else:
iteration_space = normalize_slice(iteration_slice, common_shape)
iteration_space = tuple([s if isinstance(s, slice) else slice(s, s, 1) for s in iteration_space])
iteration_space = tuple([s if isinstance(s, slice) else slice(s, s + 1, 1) for s in iteration_space])
loop_counter_symbols = [LoopOverCoordinate.get_loop_counter_symbol(i) for i in range(len(iteration_space))]
......
import numpy as np
import sympy as sp
import pytest
from pystencils import Assignment, Field, TypedSymbol, create_kernel, make_slice
from pystencils import (
Assignment,
Field,
TypedSymbol,
create_kernel,
make_slice,
Target,
create_data_handling,
)
from pystencils.simp import sympy_cse_on_assignment_list
def test_sliced_iteration():
@pytest.mark.parametrize("target", [Target.CPU, Target.GPU])
def test_sliced_iteration(target):
if target == Target.GPU:
pytest.importorskip("cupy")
size = (4, 4)
src_arr = np.ones(size)
dst_arr = np.zeros_like(src_arr)
src_field = Field.create_from_numpy_array('src', src_arr)
dst_field = Field.create_from_numpy_array('dst', dst_arr)
dh = create_data_handling(size, default_target=target, default_ghost_layers=0)
src_field = dh.add_array("src", 1)
dst_field = dh.add_array("dst", 1)
dh.fill(src_field.name, 1.0, ghost_layers=True)
dh.fill(dst_field.name, 0.0, ghost_layers=True)
a, b = sp.symbols("a b")
update_rule = Assignment(dst_field[0, 0],
(a * src_field[0, 1] + a * src_field[0, -1] +
b * src_field[1, 0] + b * src_field[-1, 0]) / 4)
update_rule = Assignment(
dst_field[0, 0],
(
a * src_field[0, 1]
+ a * src_field[0, -1]
+ b * src_field[1, 0]
+ b * src_field[-1, 0]
)
/ 4,
)
s = make_slice[1:3, 1]
kernel = create_kernel(
sympy_cse_on_assignment_list([update_rule]), iteration_slice=s, target=target
).compile()
if target == Target.GPU:
dh.all_to_gpu()
dh.run_kernel(kernel, a=1.0, b=1.0)
if target == Target.GPU:
dh.all_to_cpu()
expected_result = np.zeros(size)
expected_result[1:3, 1] = 1
np.testing.assert_almost_equal(dh.gather_array(dst_field.name), expected_result)
@pytest.mark.parametrize("target", [Target.CPU, Target.GPU])
def test_symbols_in_slice(target):
if target == Target.GPU:
pytest.xfail("Iteration slices including arbitrary symbols are currently broken on GPU")
size = (4, 4)
dh = create_data_handling(size, default_target=target, default_ghost_layers=0)
src_field = dh.add_array("src", 1)
dst_field = dh.add_array("dst", 1)
dh.fill(src_field.name, 1.0, ghost_layers=True)
dh.fill(dst_field.name, 0.0, ghost_layers=True)
a, b = sp.symbols("a b")
update_rule = Assignment(
dst_field[0, 0],
(
a * src_field[0, 1]
+ a * src_field[0, -1]
+ b * src_field[1, 0]
+ b * src_field[-1, 0]
)
/ 4,
)
x_end = TypedSymbol("x_end", "int")
s = make_slice[1:x_end, 1]
x_end_value = size[1] - 1
kernel = create_kernel(sympy_cse_on_assignment_list([update_rule]), iteration_slice=s).compile()
kernel = create_kernel(
sympy_cse_on_assignment_list([update_rule]), iteration_slice=s, target=target
).compile()
if target == Target.GPU:
dh.all_to_gpu()
dh.run_kernel(kernel, a=1.0, b=1.0, x_end=x_end_value)
kernel(src=src_arr, dst=dst_arr, a=1.0, b=1.0, x_end=x_end_value)
if target == Target.GPU:
dh.all_to_cpu()
expected_result = np.zeros(size)
expected_result[1:x_end_value, 1] = 1
np.testing.assert_almost_equal(expected_result, dst_arr)
np.testing.assert_almost_equal(dh.gather_array(dst_field.name), expected_result)
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment