Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
//======================================================================================================================
//
// This file is part of waLBerla. waLBerla is free software: you can
// redistribute it and/or modify it under the terms of the GNU General Public
// License as published by the Free Software Foundation, either version 3 of
// the License, or (at your option) any later version.
//
// waLBerla is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
// for more details.
//
// You should have received a copy of the GNU General Public License along
// with waLBerla (see COPYING.txt). If not, see <http://www.gnu.org/licenses/>.
//
//! \file FlowAroundSphereCodeGen.cpp
//! \author Frederik Hennig <frederik.hennig@fau.de>
//! \author Markus Holzer <markus.holzer@fau.de>
//
//======================================================================================================================
#include "blockforest/all.h"
#include "core/all.h"
#include "domain_decomposition/all.h"
#include "field/all.h"
#include "geometry/all.h"
#include "lbm/inplace_streaming/TimestepTracker.h"
#include "lbm/vtk/QCriterion.h"
#include "python_coupling/CreateConfig.h"
#include "python_coupling/PythonCallback.h"
#include "timeloop/all.h"
#if defined(WALBERLA_BUILD_WITH_CUDA)
# include "gpu/AddGPUFieldToStorage.h"
# include "gpu/DeviceSelectMPI.h"
# include "gpu/HostFieldAllocator.h"
# include "gpu/NVTX.h"
# include "gpu/ParallelStreams.h"
# include "gpu/communication/GPUPackInfo.h"
# include "gpu/communication/UniformGPUScheme.h"
#endif
// CodeGen includes
#include "FlowAroundSphereCodeGen_InfoHeader.h"
namespace walberla
{
typedef lbm::FlowAroundSphereCodeGen_PackInfoEven PackInfoEven_T;
typedef lbm::FlowAroundSphereCodeGen_PackInfoOdd PackInfoOdd_T;
typedef walberla::uint8_t flag_t;
typedef FlagField< flag_t > FlagField_T;
#if defined(WALBERLA_BUILD_WITH_CUDA)
#endif
using namespace std::placeholders;
auto pdfFieldAdder = [](IBlock* const block, StructuredBlockStorage* const storage) {
return new PdfField_T(storage->getNumberOfXCells(*block), storage->getNumberOfYCells(*block),
storage->getNumberOfZCells(*block), uint_t(1), field::fzyx,
make_shared< field::AllocateAligned< real_t, 64 > >());
};
auto VelocityCallback = [](const Cell& pos, const shared_ptr< StructuredBlockForest >& SbF, IBlock& block,
real_t inflow_velocity, const bool constant_inflow = true) {
if (constant_inflow)
{
Vector3< real_t > result(inflow_velocity, real_c(0.0), real_c(0.0));
return result;
}
else
{
Cell globalCell;
CellInterval domain = SbF->getDomainCellBB();
auto h_y = real_c(domain.ySize());
auto h_z = real_c(domain.zSize());
SbF->transformBlockLocalToGlobalCell(globalCell, block, pos);
auto y1 = real_c(globalCell[1] - (h_y / 2.0 - 0.5));
auto z1 = real_c(globalCell[2] - (h_z / 2.0 - 0.5));
real_t u = (inflow_velocity * real_c(16.0)) / (h_y * h_y * h_z * h_z) * (h_y / real_c(2.0) - y1) *
(h_y / real_c(2.0) + y1) * (h_z / real_c(2.0) - z1) * (h_z / real_c(2.0) + z1);
Vector3< real_t > result(u, 0.0, 0.0);
return result;
}
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
};
class AlternatingBeforeFunction
{
public:
typedef std::function< void() > BeforeFunction;
AlternatingBeforeFunction(BeforeFunction evenFunc, BeforeFunction oddFunc,
std::shared_ptr< lbm::TimestepTracker >& tracker)
: tracker_(tracker), funcs_{ evenFunc, oddFunc } {};
void operator()() { funcs_[tracker_->getCounter()](); }
private:
std::shared_ptr< lbm::TimestepTracker > tracker_;
std::vector< BeforeFunction > funcs_;
};
class Filter
{
public:
explicit Filter(Vector3< uint_t > numberOfCells) : numberOfCells_(numberOfCells) {}
void operator()(const IBlock& /*block*/) {}
bool operator()(const cell_idx_t x, const cell_idx_t y, const cell_idx_t z) const
{
return x >= -1 && x <= cell_idx_t(numberOfCells_[0]) && y >= -1 && y <= cell_idx_t(numberOfCells_[1]) &&
z >= -1 && z <= cell_idx_t(numberOfCells_[2]);
}
private:
Vector3< uint_t > numberOfCells_;
};
using FluidFilter_T = Filter;
int main(int argc, char** argv)
{
walberla::Environment walberlaEnv(argc, argv);
#if defined(WALBERLA_BUILD_WITH_CUDA)
#endif
for (auto cfg = python_coupling::configBegin(argc, argv); cfg != python_coupling::configEnd(); ++cfg)
{
WALBERLA_MPI_WORLD_BARRIER()
auto config = *cfg;
logging::configureLogging(config);
auto blocks = blockforest::createUniformBlockGridFromConfig(config);
// read parameters
Vector3< uint_t > cellsPerBlock =
config->getBlock("DomainSetup").getParameter< Vector3< uint_t > >("cellsPerBlock");
auto parameters = config->getOneBlock("Parameters");
const uint_t timesteps = parameters.getParameter< uint_t >("timesteps", uint_c(10));
const real_t omega = parameters.getParameter< real_t >("omega", real_c(1.9));
const real_t u_max = parameters.getParameter< real_t >("u_max", real_c(0.05));
const real_t reynolds_number = parameters.getParameter< real_t >("reynolds_number", real_c(1000.0));
const uint_t diameter_sphere = parameters.getParameter< uint_t >("diameter_sphere", uint_t(5));
const bool constant_inflow = parameters.getParameter< bool >("constant_inflow", true);
const real_t remainingTimeLoggerFrequency =
parameters.getParameter< real_t >("remainingTimeLoggerFrequency", real_c(3.0)); // in seconds
// create fields
BlockDataID pdfFieldID = blocks->addStructuredBlockData< PdfField_T >(pdfFieldAdder, "PDFs");
BlockDataID velFieldID = field::addToStorage< VelocityField_T >(blocks, "velocity", real_c(0.0), field::fzyx);
BlockDataID densityFieldID = field::addToStorage< ScalarField_T >(blocks, "density", real_c(0.0), field::fzyx);
#if defined(WALBERLA_BUILD_WITH_CUDA)
BlockDataID pdfFieldIDGPU = gpu::addGPUFieldToStorage< PdfField_T >(blocks, pdfFieldID, "PDFs on GPU", true);
BlockDataID velFieldIDGPU =
gpu::addGPUFieldToStorage< VelocityField_T >(blocks, velFieldID, "velocity on GPU", true);
BlockDataID densityFieldIDGPU =
gpu::addGPUFieldToStorage< ScalarField_T >(blocks, densityFieldID, "density on GPU", true);
#endif
BlockDataID flagFieldId = field::addFlagFieldToStorage< FlagField_T >(blocks, "flag field");
// initialise all PDFs
#if defined(WALBERLA_BUILD_WITH_CUDA)
pystencils::FlowAroundSphereCodeGen_MacroSetter setterSweep(pdfFieldIDGPU, velFieldIDGPU);
for (auto& block : *blocks)
setterSweep(&block);
gpu::fieldCpy< PdfField_T, GPUField >(blocks, pdfFieldID, pdfFieldIDGPU);
#else
pystencils::FlowAroundSphereCodeGen_MacroSetter setterSweep(pdfFieldID, velFieldID);
for (auto& block : *blocks)
setterSweep(&block);
#endif
// Create communication
#if defined(WALBERLA_BUILD_WITH_CUDA)
// This way of using alternating pack infos is temporary and will soon be replaced
// by something more straight-forward
gpu::communication::UniformGPUScheme< Stencil_T > comEven(blocks, false);
comEven.addPackInfo(make_shared< PackInfoEven_T >(pdfFieldIDGPU));
auto evenComm = std::function< void() >([&]() { comEven.communicate(); });
gpu::communication::UniformGPUScheme< Stencil_T > comODD(blocks, false);
comODD.addPackInfo(make_shared< PackInfoOdd_T >(pdfFieldIDGPU));
auto oddComm = std::function< void() >([&]() { comODD.communicate(); });
#else
blockforest::communication::UniformBufferedScheme< Stencil_T > evenComm(blocks);
evenComm.addPackInfo(make_shared< PackInfoEven_T >(pdfFieldID));
blockforest::communication::UniformBufferedScheme< Stencil_T > oddComm(blocks);
oddComm.addPackInfo(make_shared< PackInfoOdd_T >(pdfFieldID));
#endif
// create and initialize boundary handling
const FlagUID fluidFlagUID("Fluid");
auto boundariesConfig = config->getOneBlock("Boundaries");
std::function< Vector3< real_t >(const Cell&, const shared_ptr< StructuredBlockForest >&, IBlock&) >
velocity_initialisation = std::bind(VelocityCallback, _1, _2, _3, u_max, constant_inflow);
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#if defined(WALBERLA_BUILD_WITH_CUDA)
lbm::FlowAroundSphereCodeGen_UBB ubb(blocks, pdfFieldIDGPU, velocity_initialisation);
lbm::FlowAroundSphereCodeGen_NoSlip noSlip(blocks, pdfFieldIDGPU);
lbm::FlowAroundSphereCodeGen_Outflow outflow(blocks, pdfFieldIDGPU, pdfFieldID);
lbm::FlowAroundSphereCodeGen_LbSweep lbSweep(densityFieldIDGPU, pdfFieldIDGPU, velFieldIDGPU, omega);
#else
lbm::FlowAroundSphereCodeGen_UBB ubb(blocks, pdfFieldID, velocity_initialisation);
lbm::FlowAroundSphereCodeGen_NoSlip noSlip(blocks, pdfFieldID);
lbm::FlowAroundSphereCodeGen_Outflow outflow(blocks, pdfFieldID);
lbm::FlowAroundSphereCodeGen_LbSweep lbSweep(densityFieldID, pdfFieldID, velFieldID, omega);
#endif
geometry::initBoundaryHandling< FlagField_T >(*blocks, flagFieldId, boundariesConfig);
geometry::setNonBoundaryCellsToDomain< FlagField_T >(*blocks, flagFieldId, fluidFlagUID);
ubb.fillFromFlagField< FlagField_T >(blocks, flagFieldId, FlagUID("UBB"), fluidFlagUID);
noSlip.fillFromFlagField< FlagField_T >(blocks, flagFieldId, FlagUID("NoSlip"), fluidFlagUID);
outflow.fillFromFlagField< FlagField_T >(blocks, flagFieldId, FlagUID("Outflow"), fluidFlagUID);
// create time loop
SweepTimeloop timeloop(blocks->getBlockStorage(), timesteps);
// Timestep Tracking and Sweeps
auto tracker = make_shared< lbm::TimestepTracker >(0);
AlternatingBeforeFunction communication(evenComm, oddComm, tracker);
// add LBM sweep and communication to time loop
timeloop.add() << BeforeFunction(communication, "communication") << Sweep(ubb.getSweep(tracker), "ubb boundary");
timeloop.add() << Sweep(outflow.getSweep(tracker), "outflow boundary");
timeloop.add() << Sweep(noSlip.getSweep(tracker), "noSlip boundary");
timeloop.add() << BeforeFunction(tracker->getAdvancementFunction(), "Timestep Advancement")
<< Sweep(lbSweep.getSweep(tracker), "LB update rule");
// LBM stability check
timeloop.addFuncAfterTimeStep(makeSharedFunctor(field::makeStabilityChecker< PdfField_T, FlagField_T >(
config, blocks, pdfFieldID, flagFieldId, fluidFlagUID)),
"LBM stability check");
// log remaining time
timeloop.addFuncAfterTimeStep(
timing::RemainingTimeLogger(timeloop.getNrOfTimeSteps(), remainingTimeLoggerFrequency),
"remaining time logger");
// add VTK output to time loop
uint_t vtkWriteFrequency = parameters.getParameter< uint_t >("vtkWriteFrequency", 0);
if (vtkWriteFrequency > 0)
{
auto vtkOutput = vtk::createVTKOutput_BlockData(*blocks, "vtk", vtkWriteFrequency, 0, false, "vtk_out",
"simulation_step", false, true, true, false, 0);
#if defined(WALBERLA_BUILD_WITH_CUDA)
vtkOutput->addBeforeFunction([&]() {
gpu::fieldCpy< VelocityField_T, GPUField >(blocks, velFieldID, velFieldIDGPU);
gpu::fieldCpy< ScalarField_T, GPUField >(blocks, densityFieldID, densityFieldIDGPU);
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
});
#endif
auto velWriter = make_shared< field::VTKWriter< VelocityField_T > >(velFieldID, "velocity");
auto densityWriter = make_shared< field::VTKWriter< ScalarField_T > >(densityFieldID, "density");
FluidFilter_T filter(cellsPerBlock);
auto QCriterionWriter = make_shared< lbm::QCriterionVTKWriter< VelocityField_T, FluidFilter_T > >(
blocks, filter, velFieldID, "Q-Criterion");
vtkOutput->addCellDataWriter(velWriter);
vtkOutput->addCellDataWriter(densityWriter);
vtkOutput->addCellDataWriter(QCriterionWriter);
timeloop.addFuncAfterTimeStep(vtk::writeFiles(vtkOutput), "VTK Output");
}
WcTimer simTimer;
WALBERLA_LOG_INFO_ON_ROOT("Simulating flow around sphere:"
"\n timesteps: "
<< timesteps << "\n reynolds number: " << reynolds_number
<< "\n relaxation rate: " << omega << "\n maximum inflow velocity: " << u_max
<< "\n diameter_sphere: " << diameter_sphere)
simTimer.start();
timeloop.run();
simTimer.end();
WALBERLA_LOG_INFO_ON_ROOT("Simulation finished")
auto nrOfCells = real_c(cellsPerBlock[0] * cellsPerBlock[1] * cellsPerBlock[2]);
auto mlupsPerProcess = nrOfCells * real_c(timesteps) / time * 1e-6;
WALBERLA_LOG_RESULT_ON_ROOT("MLUPS per process " << mlupsPerProcess)
WALBERLA_LOG_RESULT_ON_ROOT("Time per time step " << time / real_c(timesteps))
}
return EXIT_SUCCESS;
}
} // namespace walberla
int main(int argc, char** argv) { walberla::main(argc, argv); }