Skip to content
Snippets Groups Projects
Commit db9b8919 authored by Sebastian Eibl's avatar Sebastian Eibl
Browse files

Merge branch 'update' into 'master'

[UPDATE] readme and contributors

See merge request walberla/walberla!385
parents bb19abb7 db86915e
Branches
No related merge requests found
......@@ -13,7 +13,9 @@ Dominik Bartuschat
Ehsan Fattahi
Felix Winterhalter
Florian Schornbaum
Grigorii Drozdov
Helen Schottenhamml
Igor Ostanin
Jan Götz
Jan Hönig
João Victor Tozatti Risso
......
# waLBerla
waLBerla (widely applicable Lattice Boltzmann from Erlangen) is a massively
parallel framework for multi physics applications. Besides its original
objective, Lattice Boltzmann solvers for hydrodynamics, it now contains
modules for other applications like Multigrid and rigid body dynamics
as well. Great emphasis is placed on the interoperability between the modules
in particular the fluid-particle coupling.
It scales from laptops to current and future supercomputers while maintaining
waLBerla (widely applicable Lattice Boltzmann from Erlangen) is a massively
parallel framework for multi physics applications. Besides its original
objective, Lattice Boltzmann solvers for hydrodynamics, it now contains
modules for other applications like Multigrid and rigid body dynamics
as well. Great emphasis is placed on the interoperability between the modules
in particular the fluid-particle coupling.
It scales from laptops to current and future supercomputers while maintaining
near-perfect efficiency.
See https://www.walberla.net/ for more information and a showcase of applications.
......@@ -47,15 +47,30 @@ Many thanks go to waLBerla's [contributors](AUTHORS.txt)
If you use waLBerla in a publication, please cite the following articles:
- C. Godenschwager, F. Schornbaum, M. Bauer, H. Köstler, and U. Rüde. A
framework for hybrid parallel flow simulations with a trillion cells in complex
geometries. In: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, page 35. ACM, 2013.
- M. Bauer, S. Eibl, C. Godenschwager, N. Kohl, M. Kuron, C. Rettinger,
F. Schornbaum, C. Schwarzmeier, D. Thönnes, H. Köstler, and U. Rüde. waLBerla:
A block-structured high-performance framework for multiphysics simulations. In:
Computers & Mathematics with Applications, doi:10.1016/j.camwa.2020.01.007.
Elsevier, 2020.
Overview:
- M. Bauer et al, *waLBerla: A block-structured high-performance framework for
multiphysics simulations*. Computers & Mathematics with Applications, 2020.
https://doi.org/10.1016/j.camwa.2020.01.007.
Grid Refinement:
- F. Schornbaum and U. Rüde, *Massively parallel algorithms for the lattice boltzmann
method on nonuniform grids*. SIAM Journal on Scientific Computing, 2016.
https://doi.org/10.1137/15M1035240
LBM - Particle Coupling:
- C. Rettinger and U. Rüde, *A comparative study of fluid-particle coupling methods for
fully resolved lattice Boltzmann simulations*. Computers & Fluids, 2017.
https://doi.org/10.1016/j.compfluid.2017.05.033
MESA-PD:
- S. Eibl and U. Rüde, *A Modular and Extensible Software Architecture for Particle Dynamics*.
Proceedings Of The 8Th International Conference On Discrete Element Methods.
https://mercurylab.co.uk/dem8/full-papers/#page-content
Carbon Nanotubes:
- G. Drozdov et al, *Densification of single-walled carbon nanotube films:
Mesoscopic distinct element method simulations and experimental validation*.
Journal of Applied Physics, 2020. https://doi.org/10.1063/5.0025505
## License
......
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment