Newer
Older

Christian Godenschwager
committed
# waLBerla
waLBerla (widely applicable Lattice Boltzmann from Erlangen) is a massively
parallel framework for multi physics applications. Besides its original
objective, Lattice Boltzmann solvers for hydrodynamics, it now contains
modules for other applications like Multigrid and rigid body dynamics
as well. Great emphasis is placed on the interoperability between the modules
in particular the fluid-particle coupling.
It scales from laptops to current and future supercomputers while maintaining
near-perfect efficiency.
See http://walberla.net/ for more information and a showcase of applications.
## Documentation and Tutorials
Documentation for the C++ framework is available in
[Doxygen](http://walberla.net/doxygen/index.html), while the Python interface
is documented in [Sphinx](http://walberla.net/sphinx/index.html).
## Getting started
The minimum requirements are a C++14-compliant compiler (e.g. GCC or Clang),

Christian Godenschwager
committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
the [Boost](http://www.boost.org) library and the [CMake](http://www.cmake.org)
build system. Furthermore, you need an MPI library (like
[Open MPI](http://www.open-mpi.org)) if you want to make use of parallel
processing capabilities. All of these dependencies are typically available in
your operating system's package manager.
## Get involved
### Contributing
Please submit all code contributions on our
[GitLab](https://i10git.cs.fau.de/walberla/walberla). To get an account, please
sign and submit the [contributor license agreement](CONTRIBUTING.txt).
### Support
While we currently do not have a mailing list, any questions can be asked via
the [Issue Tracker](https://i10git.cs.fau.de/walberla/walberla/issues).
## Authors
Many thanks go to waLBerla's [contributors](AUTHORS.txt)
### Please cite us
If you use waLBerla in a publication, please cite the following article:
- C. Godenschwager, F. Schornbaum, M. Bauer, H. Köstler, and U. Rüde. A
framework for hybrid parallel flow simulations with a trillion cells in complex
geometries. In: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, page 35. ACM, 2013.
## License
waLBerla is licensed under [GPLv3](COPYING.txt).