Skip to content
Snippets Groups Projects
Matrix3.h 76.6 KiB
Newer Older
//======================================================================================================================
//
//  This file is part of waLBerla. waLBerla is free software: you can 
//  redistribute it and/or modify it under the terms of the GNU General Public
//  License as published by the Free Software Foundation, either version 3 of 
//  the License, or (at your option) any later version.
//  
//  waLBerla is distributed in the hope that it will be useful, but WITHOUT 
//  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
//  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License 
//  for more details.
//  
//  You should have received a copy of the GNU General Public License along
//  with waLBerla (see COPYING.txt). If not, see <http://www.gnu.org/licenses/>.
//
//! \file Matrix3.h
//! \ingroup core
//! \author Klaus Iglberger
//! \author Florian Schornbaum <florian.schornbaum@fau.de>
//! \brief Implementation of a 3x3 matrix
//
//======================================================================================================================

#pragma once

#include "FPClassify.h"
#include "MathTrait.h"
#include "Vector3.h"

#include "core/debug/Debug.h"
#include "core/mpi/Datatype.h"
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
#include "core/mpi/RecvBuffer.h"
#include "core/mpi/SendBuffer.h"

#include <boost/static_assert.hpp>
#include <algorithm>
#include <cmath>
#include <iostream>
#include <limits>


namespace walberla {
namespace math {


//**********************************************************************************************************************
// Definitions
//**********************************************************************************************************************

//! High-order return value.
/*! Abbreviation for the evaluation of the higher-order data type in a numerical operation. */
#define HIGH typename MathTrait<Type,Other>::High



//======================================================================================================================
//
//  CLASS DEFINITION
//
//======================================================================================================================

//**********************************************************************************************************************
/*!\brief Efficient, generic implementation of a 3x3 matrix.
// \ingroup math
//
// The Matrix3 class is the representation of a 3x3 matrix with a total of 9 statically allocated
// elements of arbitrary type. The naming convention of the elements is as follows:

                          \f[\left(\begin{array}{*{3}{c}}
                          xx & xy & xz \\
                          yx & yy & yz \\
                          zx & zy & zz \\
                          \end{array}\right)\f]\n

// These elements can be accessed directly with the 1D subscript operator or with the 2D function
// operator. The numbering of the matrix elements is

                          \f[\left(\begin{array}{*{3}{c}}
                          0 & 1 & 2 \\
                          3 & 4 & 5 \\
                          6 & 7 & 8 \\
                          \end{array}\right)\f]
*/
template< typename Type >
class Matrix3
{
private:
   //**Friend declarations*************************************************************************
   /*! \cond internal */
   template< typename Other > friend class Matrix3;
   /*! \endcond */
   //*******************************************************************************************************************

public:
   //**Constructors*****************************************************************************************************
   explicit inline Matrix3();
   explicit inline Matrix3( Type init );
   explicit inline Matrix3( const Vector3<Type>& a, const Vector3<Type>& b, const Vector3<Type>& c );
   explicit inline Matrix3( Type xx, Type xy, Type xz, Type yx, Type yy, Type yz, Type zx, Type zy, Type zz );
   explicit inline Matrix3( const Type* init );

   template< typename Axis, typename Angle >
   explicit Matrix3( Vector3<Axis> axis, Angle angle );

   inline Matrix3( const Matrix3& m );

   template< typename Other >
   inline Matrix3( const Matrix3<Other>& m );

   inline static Matrix3 makeDiagonalMatrix( const Type xx, const Type yy, const Type zz );
   inline static Matrix3 makeDiagonalMatrix( const Type d );
   inline static Matrix3 makeIdentityMatrix();
   //*******************************************************************************************************************

   //**Destructor*******************************************************************************************************
   // No explicitly declared destructor.
   //*******************************************************************************************************************

   //**Operators********************************************************************************************************
   /*!\name Operators */
   //@{
                              inline Matrix3&    operator= ( Type set );
                              inline Matrix3&    operator= ( const Matrix3& set );
   template< typename Other > inline Matrix3&    operator= ( const Matrix3<Other>& set );
   template< typename Other > inline bool        operator==( const Matrix3<Other>& rhs )   const;
   template< typename Other > inline bool        operator!=( const Matrix3<Other>& rhs )   const;
                              inline Type&       operator[]( uint_t index );
                              inline const Type& operator[]( uint_t index )                const;
                              inline Type&       operator()( uint_t i, uint_t j );
                              inline const Type& operator()( uint_t i, uint_t j )          const;
   //@}
   //*******************************************************************************************************************

   //**Arithmetic operators************************************************************************
   /*!\name Arithmetic operators
   // \brief The return type of the arithmetic operators depends on the involved data types of
   // \brief the matrices. HIGH denotes the more significant data type of the arithmetic operation
   // \brief (for further detail see the MathTrait class description).
   */
   //@{
   template< typename Other > inline Matrix3&            operator+=( const Matrix3<Other>& rhs );
   template< typename Other > inline Matrix3&            operator-=( const Matrix3<Other>& rhs );
   template< typename Other > inline Matrix3&            operator*=( Other rhs );
   template< typename Other > inline Matrix3&            operator*=( const Matrix3<Other>& rhs );
   template< typename Other > inline const Matrix3<HIGH> operator+ ( const Matrix3<Other>& rhs ) const;
   template< typename Other > inline const Matrix3<HIGH> operator- ( const Matrix3<Other>& rhs ) const;
   template< typename Other > inline const Matrix3<HIGH> operator* ( Other rhs )                 const;
   template< typename Other > inline const Vector3<HIGH> operator* ( const Vector3<Other>& rhs ) const;
   template< typename Other > inline const Matrix3<HIGH> operator* ( const Matrix3<Other>& rhs ) const;
   //@}
   //*******************************************************************************************************************

   //**Utility functions***************************************************************************
   /*!\name Utility functions
   // \brief The return type of the utility functions depends on the involved data types of the
   // \brief matrices. HIGH denotes the more significant data type of the utility operations
   // \brief (for further detail see the MathTrait class description).
   */
   //@{
                              inline Type                getDeterminant()                           const;
                              inline Matrix3&            transpose();
                              inline const Matrix3       getTranspose()                             const;
                              inline Matrix3&            invert();
                              inline const Matrix3       getInverse()                               const;
   template< typename Other > inline const Vector3<HIGH> multTranspose( const Vector3<Other>& rhs ) const;
   template< typename Other > inline const Matrix3<HIGH> rotate( const Matrix3<Other>& m )          const;
   template< typename Other > inline const Matrix3<HIGH> diagRotate( const Matrix3<Other>& m )      const;
                              inline bool                isSingular()                               const;
                              inline bool                isSymmetric()                              const;
                              inline bool                isZero()                                   const;
                              inline const Matrix3       getCholesky()                              const;
   template< typename Other > inline const Vector3<HIGH> solve( const Vector3<Other> &rhs )         const;
                              inline real_t              trace()                                    const;
   //@}
   //*******************************************************************************************************************

   //**Euler rotations*****************************************************************************
   //! Order of the Euler rotation
   /*! This codes are needed for the EulerAngles function in order to calculate the Euler angles
       for a specific combination of rotations. */
   enum EulerRotation {
      XYZs =  0,  //!< Rotation order x, y, z in a static frame.
      ZYXr =  1,  //!< Rotation order z, y, x in a rotating frame.
      XYXs =  2,  //!< Rotation order x, y, x in a static frame.
      XYXr =  3,  //!< Rotation order x, y, z in a rotating frame.
      XZYs =  4,  //!< Rotation order x, z, y in a static frame.
      YZXr =  5,  //!< Rotation order y, z, x in a rotating frame.
      XZXs =  6,  //!< Rotation order x, z, x in a static frame.
      XZXr =  7,  //!< Rotation order x, z, x in a rotating frame.
      YZXs =  8,  //!< Rotation order y, z, x in a static frame.
      XZYr =  9,  //!< Rotation order x, z, y in a rotating frame.
      YZYs = 10,  //!< Rotation order y, z, y in a static frame.
      YZYr = 11,  //!< Rotation order y, z, y in a rotating frame.
      YXZs = 12,  //!< Rotation order y, x, z in a static frame.
      ZXYr = 13,  //!< Rotation order z, x, y in a rotating frame.
      YXYs = 14,  //!< Rotation order y, x, y in a static frame.
      YXYr = 15,  //!< Rotation order y, x, y in a rotating frame.
      ZXYs = 16,  //!< Rotation order z, x, y in a static frame.
      YXZr = 17,  //!< Rotation order y, x, z in a rotating frame.
      ZXZs = 18,  //!< Rotation order z, x, z in a static frame.
      ZXZr = 19,  //!< Rotation order z, x, z in a rotating frame.
      ZYXs = 20,  //!< Rotation order z, y, x in a static frame.
      XYZr = 21,  //!< Rotation order x, y, z in a rotating frame.
      ZYZs = 22,  //!< Rotation order z, y, z in a static frame.
      ZYZr = 23   //!< Rotation order z, y, z in a rotating frame.
   };

   /*!\name Euler rotations
   // \brief For the classification of the Euler rotation, the following characteristics are
   // \brief defined:\n
   // \brief  - Inner axis: the inner axis is the axis of the first rotation matrix multiplied
   // \brief    to a vector.
   // \brief  - Parity: the parity is even, if the inner axis X is followed by the middle axis
   // \brief    Y, or Y is followed by Z, or Z is followed by X; otherwise parity is odd.
   // \brief  - Repetition: repetition tells, if the first and last axes are the same or different.
   // \brief  - Frame: the frame refers to the frame from which the Euler angles are calculated.
   // \brief
   // \brief Altogether, there are 24 possible Euler rotations. The possibilities are consisting
   // \brief of the choice of the inner axis (X,Y or Z), the parity (even or odd), repetition
   // \brief (yes or no) and the frame (static or rotating). E.g., an Euler order of XYZs stands
   // \brief for the rotation order of x-, y- and z-axis in a static frame (inner axis: X, parity:
   // \brief even, repetition: no, frame: static), whereas YXYr stands for the rotation order y-,
   // \brief x- and y-axis in a rotating frame ( inner axis: Y, parity: odd, repetition: yes,
   // \brief frame: rotating).
   */
   //@{
          const Vector3<Type> getEulerAngles( EulerRotation order ) const;
   inline const Vector3<Type> getEulerAnglesXYZ()                   const;
   //@}
   //*******************************************************************************************************************

private:
   //**Member variables****************************************************************************
   /*!\name Member variables */
   //@{
   Type v_[9];  //!< The nine statically allocated matrix elements.
                /*!< Access to the matrix elements is gained via the subscript or function call
                     operator. The order of the elements is
                     \f[\left(\begin{array}{*{3}{c}}
                     0 & 1 & 2 \\
                     3 & 4 & 5 \\
                     6 & 7 & 8 \\
                     \end{array}\right)\f] */
   //@}
   //*******************************************************************************************************************
};
//**********************************************************************************************************************




//======================================================================================================================
//
//  CONSTRUCTORS
//
//======================================================================================================================

//**********************************************************************************************************************
/*!\fn Matrix3<Type>::Matrix3()
// \brief The default constructor for Matrix3.
//
// The diagonal matrix elements are initialized with 1, all other elements are initialized
// with 0.
*/
template< typename Type >
inline Matrix3<Type>::Matrix3()
{
   v_[0] = v_[4] = v_[8] = Type(1);
   v_[1] = v_[2] = v_[3] = v_[5] = v_[6] = v_[7] = Type(0);
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn Matrix3<Type>::Matrix3( Type init )
// \brief Constructor for a homogeneous initialization of all elements.
//
// \param init Initial value for all matrix elements.
*/
template< typename Type >
inline Matrix3<Type>::Matrix3( Type init )
{
   v_[0] = v_[1] = v_[2] = v_[3] = v_[4] = v_[5] = v_[6] = v_[7] = v_[8] = init;
}
//**********************************************************************************************************************


//**********************************************************************************************************************
// \brief Constructor for a direct initialization of all matrix elements
//
// \param a The first column of the matrix.
// \param b The second column of the matrix.
// \param c The third column of the matrix.
//**********************************************************************************************************************
template< typename Type >
inline Matrix3<Type>::Matrix3( const Vector3<Type>& a, const Vector3<Type>& b, const Vector3<Type>& c )
{
   v_[0] = a[0]; v_[1] = b[0]; v_[2] = c[0];
   v_[3] = a[1]; v_[4] = b[1]; v_[5] = c[1];
   v_[6] = a[2]; v_[7] = b[2]; v_[8] = c[2];
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn Matrix3<Type>::Matrix3( Type xx, Type xy, Type xz, Type yx, Type yy, Type yz, Type zx, Type zy, Type zz )
// \brief Constructor for a direct initialization of all matrix elements
//
// \param xx The initial value for the xx-component.
// \param xy The initial value for the xy-component.
// \param xz The initial value for the xz-component.
// \param yx The initial value for the yx-component.
// \param yy The initial value for the yy-component.
// \param yz The initial value for the yz-component.
// \param zx The initial value for the zx-component.
// \param zy The initial value for the zy-component.
// \param zz The initial value for the zz-component.
*/
template< typename Type >
inline Matrix3<Type>::Matrix3( Type xx, Type xy, Type xz,
                               Type yx, Type yy, Type yz,
                               Type zx, Type zy, Type zz )
{
   v_[0] = xx; v_[1] = xy; v_[2] = xz;
   v_[3] = yx; v_[4] = yy; v_[5] = yz;
   v_[6] = zx; v_[7] = zy; v_[8] = zz;
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn Matrix3<Type>::Matrix3( const Type* init )
// \brief Constructor for an array initializer
//
// \param init Pointer to the initialization array.
//
// The array is assumed to have at least nine valid elements.
*/
template< typename Type >
inline Matrix3<Type>::Matrix3( const Type* init )
{
   v_[0] = init[0];
   v_[1] = init[1];
   v_[2] = init[2];
   v_[3] = init[3];
   v_[4] = init[4];
   v_[5] = init[5];
   v_[6] = init[6];
   v_[7] = init[7];
   v_[8] = init[8];
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn Matrix3<Type>::Matrix3( Vector3<Axis> axis, Angle angle )
// \brief Rotation matrix constructor.
//
// \param axis The rotation axis.
// \param angle The rotation angle.
//
// This constructor is only defined for floating point vectors. The attempt to use this
// constructor for vectors of integral data type results in a compile time error.
*/
template< typename Type >
template< typename Axis, typename Angle >
Matrix3<Type>::Matrix3( Vector3<Axis> axis, Angle angle )
{
   BOOST_STATIC_ASSERT( !std::numeric_limits<Type>::is_integer  );
   BOOST_STATIC_ASSERT( !std::numeric_limits<Axis>::is_integer  );
   BOOST_STATIC_ASSERT( !std::numeric_limits<Angle>::is_integer );

   const Angle sina( std::sin(angle) );
   const Angle cosa( std::cos(angle) );
   const Angle tmp( Angle(1)-cosa );

   normalize(axis);

   v_[0] = cosa + axis[0]*axis[0]*tmp;
   v_[1] = axis[0]*axis[1]*tmp - axis[2]*sina;
   v_[2] = axis[0]*axis[2]*tmp + axis[1]*sina;
   v_[3] = axis[1]*axis[0]*tmp + axis[2]*sina;
   v_[4] = cosa + axis[1]*axis[1]*tmp;
   v_[5] = axis[1]*axis[2]*tmp - axis[0]*sina;
   v_[6] = axis[2]*axis[0]*tmp - axis[1]*sina;
   v_[7] = axis[2]*axis[1]*tmp + axis[0]*sina;
   v_[8] = cosa + axis[2]*axis[2]*tmp;
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn Matrix3<Type>::Matrix3( const Matrix3& m )
// \brief The copy constructor for Matrix3.
//
// \param m Matrix to be copied.
//
// The copy constructor is explicitly defined in order to enable/facilitate NRV optimization.
*/
template< typename Type >
inline Matrix3<Type>::Matrix3( const Matrix3& m )
{
   v_[0] = m.v_[0];
   v_[1] = m.v_[1];
   v_[2] = m.v_[2];
   v_[3] = m.v_[3];
   v_[4] = m.v_[4];
   v_[5] = m.v_[5];
   v_[6] = m.v_[6];
   v_[7] = m.v_[7];
   v_[8] = m.v_[8];
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn Matrix3<Type>::Matrix3( const Matrix3<Other>& m )
// \brief Conversion constructor from different Matrix3 instances.
//
// \param m Matrix to be copied.
*/
template< typename Type >
template< typename Other >
inline Matrix3<Type>::Matrix3( const Matrix3<Other>& m )
{
   v_[0] = m.v_[0];
   v_[1] = m.v_[1];
   v_[2] = m.v_[2];
   v_[3] = m.v_[3];
   v_[4] = m.v_[4];
   v_[5] = m.v_[5];
   v_[6] = m.v_[6];
   v_[7] = m.v_[7];
   v_[8] = m.v_[8];
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn Matrix3<Type> Matrix3<Type>::makeDiagonalMatrix( const Type xx, const Type yy, const Type zz )
// \brief Named constructor to create a diagonal matrix. All non-diagonal elements are initialized with zero.
//
// \param xx value for element (0,0).
// \param yy value for element (1,1).
// \param zz value for element (2,2).
*/
template< typename Type >
Matrix3<Type> Matrix3<Type>::makeDiagonalMatrix( const Type xx, const Type yy, const Type zz )
{
   return Matrix3<Type>( xx, Type(), Type(), Type(), yy, Type(), Type(), Type(), zz );
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn Matrix3<Type> Matrix3<Type>::makeDiagonalMatrix( const Type d )
// \brief Named constructor to create a diagonal matrix. All non-diagonal elements are initialized with zero.
//
// \param d value for diagonal elements.
*/
template< typename Type >
Matrix3<Type> Matrix3<Type>::makeDiagonalMatrix( const Type d )
{
   return makeDiagonalMatrix( d, d, d );
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn Matrix3<Type> Matrix3<Type>::makeIdentityMatrix()
// \brief Named constructor to create the identity matrix.
// 
// All diagonal elements are initialized to one, alls others to zero.
//
*/
template< typename Type >
Matrix3<Type> Matrix3<Type>::makeIdentityMatrix()
{
   return makeDiagonalMatrix( Type(1) );
}
//**********************************************************************************************************************


//======================================================================================================================
//
//  OPERATORS
//
//======================================================================================================================

//**********************************************************************************************************************
/*!\fn Matrix3<Type>& Matrix3<Type>::operator=( Type set )
// \brief Homogenous assignment to all matrix elements.
//
// \param set Scalar value to be assigned to all matrix elements.
// \return Reference to the assigned matrix.
*/
template< typename Type >
inline Matrix3<Type>& Matrix3<Type>::operator=( Type set )
{
   v_[0] = set;
   v_[1] = set;
   v_[2] = set;
   v_[3] = set;
   v_[4] = set;
   v_[5] = set;
   v_[6] = set;
   v_[7] = set;
   v_[8] = set;
   return *this;
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn Matrix3<Type>& Matrix3<Type>::operator=( const Matrix3& set )
// \brief Copy assignment operator for Matrix3.
//
// \param set Matrix to be copied.
// \return Reference to the assigned matrix.
//
// Explicit definition of a copy assignment operator for performance reasons.
*/
template< typename Type >
inline Matrix3<Type>& Matrix3<Type>::operator=( const Matrix3& set )
{
   // This implementation is faster than the synthesized default copy assignment operator and
   // faster than an implementation with the C library function 'memcpy' in combination with a
   // protection against self-assignment. Additionally, this version goes without a protection
   // against self-assignment.
   v_[0] = set.v_[0];
   v_[1] = set.v_[1];
   v_[2] = set.v_[2];
   v_[3] = set.v_[3];
   v_[4] = set.v_[4];
   v_[5] = set.v_[5];
   v_[6] = set.v_[6];
   v_[7] = set.v_[7];
   v_[8] = set.v_[8];
   return *this;
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn Matrix3<Type>& Matrix3<Type>::operator=( const Matrix3<Other>& set )
// \brief Assignment operator for different Matrix3 instances.
//
// \param set Matrix to be copied.
// \return Reference to the assigned matrix.
*/
template< typename Type >
template< typename Other >
inline Matrix3<Type>& Matrix3<Type>::operator=( const Matrix3<Other>& set )
{
   // This implementation is faster than the synthesized default copy assignment operator and
   // faster than an implementation with the C library function 'memcpy' in combination with a
   // protection against self-assignment. Additionally, this version goes without a protection
   // against self-assignment.
   v_[0] = set.v_[0];
   v_[1] = set.v_[1];
   v_[2] = set.v_[2];
   v_[3] = set.v_[3];
   v_[4] = set.v_[4];
   v_[5] = set.v_[5];
   v_[6] = set.v_[6];
   v_[7] = set.v_[7];
   v_[8] = set.v_[8];
   return *this;
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn bool Matrix3<Type>::operator==( const Matrix3<Other>& rhs ) const
// \brief Equality operator for the comparison of two matrices.
//
// \param rhs The right-hand-side matrix for the comparison.
// \return bool
*/
template< typename Type >
template< typename Other >
inline bool Matrix3<Type>::operator==( const Matrix3<Other>& rhs ) const
{
   // In order to compare the vector and the scalar value, the data values of the lower-order
   // data type are converted to the higher-order data type.
   if( !equal( v_[0], rhs.v_[0] ) ||
       !equal( v_[1], rhs.v_[1] ) ||
       !equal( v_[2], rhs.v_[2] ) ||
       !equal( v_[3], rhs.v_[3] ) ||
       !equal( v_[4], rhs.v_[4] ) ||
       !equal( v_[5], rhs.v_[5] ) ||
       !equal( v_[6], rhs.v_[6] ) ||
       !equal( v_[7], rhs.v_[7] ) ||
       !equal( v_[8], rhs.v_[8] ) )
      return false;
   else return true;
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn bool Matrix3<Type>::operator!=( const Matrix3<Other>& rhs ) const
// \brief Inequality operator for the comparison of two matrices.
//
// \param rhs The right-hand-side matrix for the comparison.
// \return bool
*/
template< typename Type >
template< typename Other >
inline bool Matrix3<Type>::operator!=( const Matrix3<Other>& rhs ) const
{
   // In order to compare the vector and the scalar value, the data values of the lower-order
   // data type are converted to the higher-order data type.
   if( !equal( v_[0], rhs.v_[0] ) ||
       !equal( v_[1], rhs.v_[1] ) ||
       !equal( v_[2], rhs.v_[2] ) ||
       !equal( v_[3], rhs.v_[3] ) ||
       !equal( v_[4], rhs.v_[4] ) ||
       !equal( v_[5], rhs.v_[5] ) ||
       !equal( v_[6], rhs.v_[6] ) ||
       !equal( v_[7], rhs.v_[7] ) ||
       !equal( v_[8], rhs.v_[8] ) )
      return true;
   else return false;
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn Type& Matrix3<Type>::operator[]( uint_t index )
// \brief 1D-access to the matrix elements.
//
// \param index Access index. The index has to be in the range \f$[0..8]\f$.
// \return Reference to the accessed value.
*/
template< typename Type >
inline Type& Matrix3<Type>::operator[]( uint_t index )
{
   WALBERLA_ASSERT_LESS( index, 9 ,"Invalid matrix access index" );
   return v_[index];
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn const Type& Matrix3<Type>::operator[]( uint_t index ) const
// \brief 1D-access to the matrix elements.
//
// \param index Access index. The index has to be in the range \f$[0..8]\f$.
// \return Reference-to-const to the accessed value.
*/
template< typename Type >
inline const Type& Matrix3<Type>::operator[]( uint_t index ) const
{
   WALBERLA_ASSERT_LESS( index, 9 ,"Invalid matrix access index" );
   return v_[index];
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn Type& Matrix3<Type>::operator()( uint_t i, uint_t j )
// \brief 2D-access to the matrix elements.
//
// \param i Access index for the row. The index has to be in the range [0..2].
// \param j Access index for the column. The index has to be in the range [0..2].
// \return Reference to the accessed value.
*/
template< typename Type >
inline Type& Matrix3<Type>::operator()( uint_t i, uint_t j )
{
   WALBERLA_ASSERT( i<3 && j<3,"Invalid matrix access index" );
   return v_[i*3+j];
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn const Type& Matrix3<Type>::operator()( uint_t i, uint_t j ) const
// \brief 2D-access to the matrix elements.
//
// \param i Access index for the row. The index has to be in the range [0..2].
// \param j Access index for the column. The index has to be in the range [0..2].
// \return Reference-to-const to the accessed value.
*/
template< typename Type >
inline const Type& Matrix3<Type>::operator()( uint_t i, uint_t j ) const
{
   WALBERLA_ASSERT( i<3 && j<3 ,"Invalid matrix access index" );
   return v_[i*3+j];
}
//**********************************************************************************************************************




//======================================================================================================================
//
//  ARITHMETIC OPERATORS
//
//======================================================================================================================

//**********************************************************************************************************************
/*!\fn Matrix3<Type>& Matrix3<Type>::operator+=( const Matrix3<Other>& rhs )
// \brief Addition assignment operator for the addition of two matrices (\f$ A+=B \f$).
//
// \param rhs The right-hand-side matrix to be added to the matrix.
// \return Reference to the matrix.
*/
template< typename Type >
template< typename Other >
inline Matrix3<Type>& Matrix3<Type>::operator+=( const Matrix3<Other>& rhs )
{
   v_[0] += rhs.v_[0];
   v_[1] += rhs.v_[1];
   v_[2] += rhs.v_[2];
   v_[3] += rhs.v_[3];
   v_[4] += rhs.v_[4];
   v_[5] += rhs.v_[5];
   v_[6] += rhs.v_[6];
   v_[7] += rhs.v_[7];
   v_[8] += rhs.v_[8];
   return *this;
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn Matrix3<Type>& Matrix3<Type>::operator-=( const Matrix3<Other>& rhs )
// \brief Subtraction assignment operator for the subtraction of two matrices (\f$ A-=B \f$).
//
// \param rhs The right-hand-side matrix to be subtracted from the matrix.
// \return Reference to the matrix.
*/
template< typename Type >
template< typename Other >
inline Matrix3<Type>& Matrix3<Type>::operator-=( const Matrix3<Other>& rhs )
{
   v_[0] -= rhs.v_[0];
   v_[1] -= rhs.v_[1];
   v_[2] -= rhs.v_[2];
   v_[3] -= rhs.v_[3];
   v_[4] -= rhs.v_[4];
   v_[5] -= rhs.v_[5];
   v_[6] -= rhs.v_[6];
   v_[7] -= rhs.v_[7];
   v_[8] -= rhs.v_[8];
   return *this;
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn Matrix3<Type>& Matrix3<Type>::operator*=( Other rhs )
// \brief Multiplication assignment operator for the multiplication between a matrix and
// \brief a scalar value (\f$ A*=s \f$).
//
// \param rhs The right-hand-side scalar value for the multiplication.
// \return Reference to the matrix.
*/
template< typename Type >
template< typename Other >
inline Matrix3<Type>& Matrix3<Type>::operator*=( Other rhs )
{
   v_[0] *= rhs;
   v_[1] *= rhs;
   v_[2] *= rhs;
   v_[3] *= rhs;
   v_[4] *= rhs;
   v_[5] *= rhs;
   v_[6] *= rhs;
   v_[7] *= rhs;
   v_[8] *= rhs;
   return *this;
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn Matrix3<Type>& Matrix3<Type>::operator*=( const Matrix3<Other>& rhs )
// \brief Multiplication assignment operator for the multiplication between two matrices
// \brief (\f$ A*=B \f$).
//
// \param rhs The right-hand-side matrix for the multiplication.
// \return Reference to the matrix.
*/
template< typename Type >
template< typename Other >
inline Matrix3<Type>& Matrix3<Type>::operator*=( const Matrix3<Other>& rhs )
{
   // Creating a temporary due to data dependencies
   Matrix3 tmp( v_[0]*rhs.v_[0] + v_[1]*rhs.v_[3] + v_[2]*rhs.v_[6],
                v_[0]*rhs.v_[1] + v_[1]*rhs.v_[4] + v_[2]*rhs.v_[7],
                v_[0]*rhs.v_[2] + v_[1]*rhs.v_[5] + v_[2]*rhs.v_[8],
                v_[3]*rhs.v_[0] + v_[4]*rhs.v_[3] + v_[5]*rhs.v_[6],
                v_[3]*rhs.v_[1] + v_[4]*rhs.v_[4] + v_[5]*rhs.v_[7],
                v_[3]*rhs.v_[2] + v_[4]*rhs.v_[5] + v_[5]*rhs.v_[8],
                v_[6]*rhs.v_[0] + v_[7]*rhs.v_[3] + v_[8]*rhs.v_[6],
                v_[6]*rhs.v_[1] + v_[7]*rhs.v_[4] + v_[8]*rhs.v_[7],
                v_[6]*rhs.v_[2] + v_[7]*rhs.v_[5] + v_[8]*rhs.v_[8] );

   return this->operator=( tmp );
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn const Matrix3<HIGH> Matrix3<Type>::operator+( const Matrix3<Other>& rhs ) const
// \brief Addition operator for the addition of two matrices (\f$ A=B+C \f$).
//
// \param rhs The right-hand-side matrix to be added to the matrix.
// \return The sum of the two matrices.
*/
template< typename Type >
template< typename Other >
inline const Matrix3<HIGH> Matrix3<Type>::operator+( const Matrix3<Other>& rhs ) const
{
   return Matrix3<HIGH>( v_[0] + rhs.v_[0],
                         v_[1] + rhs.v_[1],
                         v_[2] + rhs.v_[2],
                         v_[3] + rhs.v_[3],
                         v_[4] + rhs.v_[4],
                         v_[5] + rhs.v_[5],
                         v_[6] + rhs.v_[6],
                         v_[7] + rhs.v_[7],
                         v_[8] + rhs.v_[8] );
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn const Matrix3<HIGH> Matrix3<Type>::operator-( const Matrix3<Other>& rhs ) const
// \brief Subtraction operator for the subtraction of two matrices (\f$ A=B-C \f$).
//
// \param rhs The right-hand-side matrix to be subtracted from the matrix.
// \return The difference of the two matrices.
*/
template< typename Type >
template< typename Other >
inline const Matrix3<HIGH> Matrix3<Type>::operator-( const Matrix3<Other>& rhs ) const
{
   return Matrix3<HIGH>( v_[0] - rhs.v_[0],
                         v_[1] - rhs.v_[1],
                         v_[2] - rhs.v_[2],
                         v_[3] - rhs.v_[3],
                         v_[4] - rhs.v_[4],
                         v_[5] - rhs.v_[5],
                         v_[6] - rhs.v_[6],
                         v_[7] - rhs.v_[7],
                         v_[8] - rhs.v_[8] );
}
//**********************************************************************************************************************

//**********************************************************************************************************************
/*!\fn const Matrix3<Type> operator-( const Matrix3<Type>& rhs )
// \brief Negation operator for the negation of one matrix.
//
// \param rhs The right-hand-side matrix of the operator.
// \return The negative matrix.
*/
template< typename Type >
inline const Matrix3<Type> operator-( const Matrix3<Type>& rhs )
{
   return Matrix3<Type>( -rhs[0],
                         -rhs[1],
                         -rhs[2],
                         -rhs[3],
                         -rhs[4],
                         -rhs[5],
                         -rhs[6],
                         -rhs[7],
                         -rhs[8] );
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn const Matrix3<HIGH> Matrix3<Type>::operator*( Other rhs ) const
// \brief Multiplication operator for the multiplication of a matrix and a scalar value
// \brief (\f$ A=B*s \f$).
//
// \param rhs The right-hand-side scalar value for the multiplication.
// \return The scaled result matrix.
*/
template< typename Type >
template< typename Other >
inline const Matrix3<HIGH> Matrix3<Type>::operator*( Other rhs ) const
{
   return Matrix3<HIGH>( v_[0]*rhs, v_[1]*rhs, v_[2]*rhs,
                         v_[3]*rhs, v_[4]*rhs, v_[5]*rhs,
                         v_[6]*rhs, v_[7]*rhs, v_[8]*rhs );
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn const Vector3<HIGH> Matrix3<Type>::operator*( const Vector3<Other>& rhs ) const
// \brief Multiplication operator for the multiplication of a matrix and a vector
// \brief (\f$ \vec{a}=B*\vec{c} \f$).
//
// \param rhs The right-hand-side vector for the multiplication.
// \return The resulting vector.
*/
template< typename Type >
template< typename Other >
inline const Vector3<HIGH> Matrix3<Type>::operator*( const Vector3<Other>& rhs ) const
{
   return Vector3<HIGH>( v_[0]*rhs[0] + v_[1]*rhs[1] + v_[2]*rhs[2],
                         v_[3]*rhs[0] + v_[4]*rhs[1] + v_[5]*rhs[2],
                         v_[6]*rhs[0] + v_[7]*rhs[1] + v_[8]*rhs[2] );
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn const Matrix3<HIGH> Matrix3<Type>::operator*( const Matrix3<Other>& rhs ) const
// \brief Multiplication operator for the multiplication of two matrices (\f$ A=B*C \f$).
//
// \param rhs The right-hand-side matrix for the multiplication.
// \return The resulting matrix.
*/
template< typename Type >
template< typename Other >
inline const Matrix3<HIGH> Matrix3<Type>::operator*( const Matrix3<Other>& rhs ) const
{
   return Matrix3<HIGH>( v_[0]*rhs.v_[0] + v_[1]*rhs.v_[3] + v_[2]*rhs.v_[6],
                         v_[0]*rhs.v_[1] + v_[1]*rhs.v_[4] + v_[2]*rhs.v_[7],
                         v_[0]*rhs.v_[2] + v_[1]*rhs.v_[5] + v_[2]*rhs.v_[8],
                         v_[3]*rhs.v_[0] + v_[4]*rhs.v_[3] + v_[5]*rhs.v_[6],
                         v_[3]*rhs.v_[1] + v_[4]*rhs.v_[4] + v_[5]*rhs.v_[7],
                         v_[3]*rhs.v_[2] + v_[4]*rhs.v_[5] + v_[5]*rhs.v_[8],
                         v_[6]*rhs.v_[0] + v_[7]*rhs.v_[3] + v_[8]*rhs.v_[6],
                         v_[6]*rhs.v_[1] + v_[7]*rhs.v_[4] + v_[8]*rhs.v_[7],
                         v_[6]*rhs.v_[2] + v_[7]*rhs.v_[5] + v_[8]*rhs.v_[8] );
}
//**********************************************************************************************************************




//======================================================================================================================
//
//  UTILITY FUNCTIONS
//
//======================================================================================================================

//**********************************************************************************************************************
/*!\fn Type Matrix3<Type>::getDeterminant() const
// \brief Calculation of the determinant of the matrix.
//
// \return The determinant of the matrix.
*/
template< typename Type >
inline Type Matrix3<Type>::getDeterminant() const
{
   return v_[0]*v_[4]*v_[8] + v_[1]*v_[5]*v_[6] + v_[2]*v_[3]*v_[7] -
          v_[6]*v_[4]*v_[2] - v_[7]*v_[5]*v_[0] - v_[8]*v_[3]*v_[1];
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn Matrix3<Type>& Matrix3<Type>::transpose()
// \brief Transposing the matrix.
//
// \return Reference to the transposed matrix.
*/
template< typename Type >
inline Matrix3<Type>& Matrix3<Type>::transpose()
{
   std::swap( v_[1], v_[3] );
   std::swap( v_[2], v_[6] );
   std::swap( v_[5], v_[7] );
   return *this;
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn const Matrix3<Type> Matrix3<Type>::getTranspose() const
// \brief Calculation of the transpose of the matrix.
//
// \return The transpose of the matrix.
*/
template< typename Type >
inline const Matrix3<Type> Matrix3<Type>::getTranspose() const
{
   return Matrix3( v_[0], v_[3], v_[6], v_[1], v_[4], v_[7], v_[2], v_[5], v_[8] );
}
//**********************************************************************************************************************


//**********************************************************************************************************************
/*!\fn Matrix3<Type>& Matrix3<Type>::invert()
// \brief Inverting the matrix.
//
// \return Reference to the inverted matrix.
//
// The calculation is performed with the matrix inversion by Cramer. This function is only
// defined for matrices of floating point type. The attempt to use this function with matrices