Commit b04caa75 authored by Markus Holzer's avatar Markus Holzer Committed by Jan Hönig
Browse files

Dataclasses for method creation

parent 4e47c1eb
......@@ -143,7 +143,7 @@ ubuntu:
before_script:
- apt-get -y remove python3-sympy
- ln -s /usr/include/locale.h /usr/include/xlocale.h
- pip3 install `grep -Eo 'sympy[>=]+[0-9\.]+' setup.py | sed 's/>/=/g'`
# - pip3 install `grep -Eo 'sympy[>=]+[0-9\.]+' setup.py | sed 's/>/=/g'`
- pip3 install git+https://gitlab-ci-token:${CI_JOB_TOKEN}@i10git.cs.fau.de/pycodegen/pystencils.git@master#egg=pystencils
script:
- export NUM_CORES=$(nproc --all)
......
......@@ -16,11 +16,12 @@ It even comes with an integrated Chapman Enskog analysis based on sympy!
Common test scenarios can be set up quickly:
```python
from lbmpy.scenarios import create_channel
from pystencils import Target
from lbmpy.session import *
ch = create_channel(domain_size=(300,100, 100), force=1e-7, method="trt",
ch = create_channel(domain_size=(300, 100, 100), force=1e-7, method=Method.TRT,
equilibrium_order=2, compressible=True,
relaxation_rates=[1.97, 1.6], optimization={'target': 'gpu'})
relaxation_rates=[1.97, 1.6], optimization={'target': Target.GPU})
```
To find out more, check out the interactive [tutorial notebooks online with binder](https://mybinder.org/v2/gh/mabau/lbmpy/master?filepath=doc%2Fnotebooks).
......
......@@ -29,8 +29,8 @@ templates_path = ['_templates']
source_suffix = '.rst'
master_doc = 'index'
copyright = f'{datetime.datetime.now().year}, Martin Bauer'
author = 'Martin Bauer'
copyright = f'{datetime.datetime.now().year}, Martin Bauer, Markus Holzer'
author = 'Martin Bauer, Markus Holzer'
# The short X.Y version (including .devXXXX, rcX, b1 suffixes if present)
version = re.sub(r'(\d+\.\d+)\.\d+(.*)', r'\1\2', lbmpy.__version__)
version = re.sub(r'(\.dev\d+).*?$', r'\1', version)
......
This diff is collapsed.
%% Cell type:markdown id: tags:
# Shan-Chen Two-Phase Single-Component Lattice Boltzmann
%% Cell type:code id: tags:
``` python
from lbmpy.session import *
from lbmpy.updatekernels import create_stream_pull_with_output_kernel
from lbmpy.macroscopic_value_kernels import macroscopic_values_getter, macroscopic_values_setter
from lbmpy.maxwellian_equilibrium import get_weights
```
%% Cell type:markdown id: tags:
This is based on section 9.3.2 of Krüger et al.'s "The Lattice Boltzmann Method", Springer 2017 (http://www.lbmbook.com).
Sample code is available at [https://github.com/lbm-principles-practice/code/](https://github.com/lbm-principles-practice/code/blob/master/chapter9/shanchen.cpp).
%% Cell type:markdown id: tags:
## Parameters
%% Cell type:code id: tags:
``` python
N = 64
omega_a = 1.
g_aa = -4.7
rho0 = 1.
stencil = get_stencil("D2Q9")
stencil = LBStencil(Stencil.D2Q9)
weights = get_weights(stencil, c_s_sq=sp.Rational(1,3))
```
%% Cell type:markdown id: tags:
## Data structures
%% Cell type:code id: tags:
``` python
dim = len(stencil[0])
dh = ps.create_data_handling((N,)*dim, periodicity=True, default_target='cpu')
src = dh.add_array('src', values_per_cell=len(stencil))
dst = dh.add_array_like('dst', 'src')
ρ = dh.add_array('rho')
```
%% Cell type:markdown id: tags:
## Force & combined velocity
%% Cell type:markdown id: tags:
The force on the fluid is
$\vec{F}_A(\vec{x})=-\psi(\rho_A(\vec{x}))g_{AA}\sum\limits_{i=1}^{q}w_i\psi(\rho_A(\vec{x}+\vec{c}_i))\vec{c}_i$
with
$\psi(\rho)=\rho_0\left[1-\exp(-\rho/\rho_0)\right]$.
%% Cell type:code id: tags:
``` python
def psi(dens):
return rho0 * (1. - sp.exp(-dens / rho0));
```
%% Cell type:code id: tags:
``` python
zero_vec = sp.Matrix([0] * dh.dim)
force = sum((psi(ρ[d]) * w_d * sp.Matrix(d)
for d, w_d in zip(stencil, weights)), zero_vec) * psi(ρ.center) * -1 * g_aa
```
%% Cell type:markdown id: tags:
## Kernels
%% Cell type:code id: tags:
``` python
collision = create_lb_update_rule(stencil=stencil,
relaxation_rate=omega_a,
compressible=True,
force_model='guo',
force=force,
kernel_type='collide_only',
lbm_config = LBMConfig(stencil=stencil, relaxation_rate=omega_a, compressible=True,
force_model=ForceModel.GUO, force=force, kernel_type='collide_only')
collision = create_lb_update_rule(lbm_config=lbm_config,
optimization={'symbolic_field': src})
stream = create_stream_pull_with_output_kernel(collision.method, src, dst, {'density': ρ})
opts = {'cpu_openmp': False,
'target': dh.default_target}
stream_kernel = ps.create_kernel(stream, **opts).compile()
collision_kernel = ps.create_kernel(collision, **opts).compile()
```
%% Cell type:markdown id: tags:
## Initialization
%% Cell type:code id: tags:
``` python
method_without_force = create_lb_method(stencil=stencil, relaxation_rate=omega_a, compressible=True)
method_without_force = create_lb_method(LBMConfig(stencil=stencil, relaxation_rate=omega_a, compressible=True))
init_assignments = macroscopic_values_setter(method_without_force, velocity=(0, 0),
pdfs=src.center_vector, density=ρ.center)
init_kernel = ps.create_kernel(init_assignments, ghost_layers=0).compile()
```
%% Cell type:code id: tags:
``` python
def init():
for x in range(N):
for y in range(N):
if (x-N/2)**2 + (y-N/2)**2 <= 15**2:
dh.fill(ρ.name, 2.1, slice_obj=[x,y])
else:
dh.fill(ρ.name, 0.15, slice_obj=[x,y])
dh.run_kernel(init_kernel)
```
%% Cell type:markdown id: tags:
## Timeloop
%% Cell type:code id: tags:
``` python
sync_pdfs = dh.synchronization_function([src.name])
sync_ρs = dh.synchronization_function([ρ.name])
def time_loop(steps):
dh.all_to_gpu()
for i in range(steps):
sync_ρs()
dh.run_kernel(collision_kernel)
sync_pdfs()
dh.run_kernel(stream_kernel)
dh.swap(src.name, dst.name)
dh.all_to_cpu()
```
%% Cell type:code id: tags:
``` python
def plot_ρs():
plt.figure(dpi=200)
plt.title("$\\rho$")
plt.scalar_field(dh.gather_array(ρ.name), vmin=0, vmax=2.5)
plt.colorbar()
```
%% Cell type:markdown id: tags:
## Run the simulation
### Initial state
%% Cell type:code id: tags:
``` python
init()
plot_ρs()
```
%%%% Output: display_data
![]()
%% Cell type:markdown id: tags:
### Check the first time step against reference data
The reference data was obtained with the [sample code](https://github.com/lbm-principles-practice/code/blob/master/chapter9/shanchen.cpp) after making the following changes:
```c++
const int nsteps = 1000;
const int noutput = 1;
```
Remove the next cell if you changed the parameters at the beginning of this notebook.
%% Cell type:code id: tags:
``` python
init()
time_loop(1)
ref = np.array([0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.136756, 0.220324, 1.2382, 2.26247, 2.26183, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.1, 2.26183, 2.26247, 1.2382, 0.220324, 0.136756, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15])
assert np.allclose(dh.gather_array(ρ.name)[N//2], ref)
```
%% Cell type:markdown id: tags:
### Run the simulation until converged
%% Cell type:code id: tags:
``` python
init()
time_loop(1000)
plot_ρs()
```
%%%% Output: display_data
![]()
......
This diff is collapsed.
This diff is collapsed.
......@@ -5,6 +5,7 @@ API Reference
:maxdepth: 1
scenarios.rst
enums.rst
kernelcreation.rst
methodcreation.rst
stencils.rst
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment