Commit c7ff5ce9 authored by Markus Holzer's avatar Markus Holzer Committed by Jan Hönig
Browse files

Adaption to pystencils's new type system

parent 5b5c7c89
......@@ -128,9 +128,8 @@ minimal-windows:
- source /cygdrive/c/Users/build/Miniconda3/Scripts/activate
- source activate pystencils
- pip install git+https://gitlab-ci-token:${CI_JOB_TOKEN}@i10git.cs.fau.de/pycodegen/pystencils.git@master#egg=pystencils
- env
- pip list
- python -c "import numpy"
- pip install sympy==1.9
- py.test -v -m "not (notebook or longrun)"
minimal-sympy-master:
......
......@@ -4,6 +4,8 @@ import tempfile
import runpy
import sys
import warnings
import platform
import nbformat
from nbconvert import PythonExporter
import sympy
......@@ -60,6 +62,9 @@ except ImportError:
os.path.join(SCRIPT_FOLDER,
"lbmpy_tests/full_scenarios/kida_vortex_flow/scenario_kida_vortex_flow.py")]
if platform.system().lower() == 'windows':
collect_ignore += [os.path.join(SCRIPT_FOLDER, "lbmpy_tests/test_quicktests.py")]
sver = sympy.__version__.split(".")
if int(sver[0]) == 1 and int(sver[1]) < 2:
add_path_to_ignore('lbmpy_tests/phasefield')
......
%% Cell type:markdown id: tags:
# Shan-Chen Two-Component Lattice Boltzmann
%% Cell type:code id: tags:
``` python
from lbmpy.session import *
from lbmpy.updatekernels import create_stream_pull_with_output_kernel
from lbmpy.macroscopic_value_kernels import macroscopic_values_getter, macroscopic_values_setter
from lbmpy.maxwellian_equilibrium import get_weights
```
%% Cell type:markdown id: tags:
This is based on section 9.3.3 of Krüger et al.'s "The Lattice Boltzmann Method", Springer 2017 (http://www.lbmbook.com).
Sample code is available at [https://github.com/lbm-principles-practice/code/](https://github.com/lbm-principles-practice/code/blob/master/chapter9/shanchen.cpp).
%% Cell type:markdown id: tags:
## Parameters
%% Cell type:code id: tags:
``` python
N = 64 # domain size
omega_a = 1. # relaxation rate of first component
omega_b = 1. # relaxation rate of second component
# interaction strength
g_aa = 0.
g_ab = g_ba = 6.
g_bb = 0.
rho0 = 1.
stencil = LBStencil(Stencil.D2Q9)
weights = get_weights(stencil, c_s_sq=sp.Rational(1, 3))
```
%% Cell type:markdown id: tags:
## Data structures
We allocate two sets of PDF's, one for each phase. Additionally, for each phase there is one field to store its density and velocity.
To run the simulation on GPU, change the `default_target` to gpu
%% Cell type:code id: tags:
``` python
dim = stencil.D
dh = ps.create_data_handling((N, ) * dim, periodicity=True, default_target=ps.Target.CPU)
src_a = dh.add_array('src_a', values_per_cell=stencil.Q)
dst_a = dh.add_array_like('dst_a', 'src_a')
src_b = dh.add_array('src_b', values_per_cell=stencil.Q)
dst_b = dh.add_array_like('dst_b', 'src_b')
ρ_a = dh.add_array('rho_a')
ρ_b = dh.add_array('rho_b')
u_a = dh.add_array('u_a', values_per_cell=stencil.D)
u_b = dh.add_array('u_b', values_per_cell=stencil.D)
u_bary = dh.add_array_like('u_bary', u_a.name)
f_a = dh.add_array('f_a', values_per_cell=stencil.D)
f_b = dh.add_array_like('f_b', f_a.name)
```
%% Cell type:markdown id: tags:
## Force & combined velocity
The two LB methods are coupled using a force term. Its symbolic representation is created in the next cells.
The force value is not written to a field, but directly evaluated inside the collision kernel.
%% Cell type:markdown id: tags:
The force between the two components is
$\mathbf{F}_k(\mathbf{x})=-\psi(\rho_k(\mathbf{x}))\sum\limits_{k^\prime\in\{A,B\}}g_{kk^\prime}\sum\limits_{i=1}^{q}w_i\psi(\rho_{k^\prime}(\mathbf{x}+\mathbf{c}_i))\mathbf{c}_i$
for $k\in\{A,B\}$
and with
$\psi(\rho)=\rho_0\left[1-\exp(-\rho/\rho_0)\right]$.
%% Cell type:code id: tags:
``` python
def psi(dens):
return rho0 * (1. - sp.exp(-dens / rho0));
```
%% Cell type:code id: tags:
``` python
zero_vec = sp.Matrix([0] * dh.dim)
force_a = zero_vec
for factor, ρ in zip([g_aa, g_ab], [ρ_a, ρ_b]):
force_a += sum((psi(ρ[d]) * w_d * sp.Matrix(d)
for d, w_d in zip(stencil, weights)),
zero_vec) * psi(ρ_a.center) * -1 * factor
force_b = zero_vec
for factor, ρ in zip([g_ba, g_bb], [ρ_a, ρ_b]):
force_b += sum((psi(ρ[d]) * w_d * sp.Matrix(d)
for d, w_d in zip(stencil, weights)),
zero_vec) * psi(ρ_b.center) * -1 * factor
f_expressions = ps.AssignmentCollection([
ps.Assignment(f_a.center_vector, force_a),
ps.Assignment(f_b.center_vector, force_b)
])
```
%% Cell type:markdown id: tags:
The barycentric velocity, which is used in place of the individual components' velocities in the equilibrium distribution and Guo force term, is
$\vec{u}=\frac{1}{\rho_a+\rho_b}\left(\rho_a\vec{u}_a+\frac{1}{2}\vec{F}_a+\rho_b\vec{u}_b+\frac{1}{2}\vec{F}_b\right)$.
%% Cell type:code id: tags:
``` python
u_full = ps.Assignment(u_bary.center_vector,
(ρ_a.center * u_a.center_vector + ρ_b.center * u_b.center_vector) / (ρ_a.center + ρ_b.center))
u_full = list(ps.Assignment(u_bary.center_vector,
(ρ_a.center * u_a.center_vector + ρ_b.center * u_b.center_vector) / (ρ_a.center + ρ_b.center)))
```
%% Cell type:markdown id: tags:
## Kernels
%% Cell type:code id: tags:
``` python
lbm_config_a = LBMConfig(stencil=stencil, relaxation_rate=omega_a, compressible=True,
velocity_input=u_bary, density_input=ρ_a, force_model=ForceModel.GUO,
force=f_a, kernel_type='collide_only')
lbm_config_b = LBMConfig(stencil=stencil, relaxation_rate=omega_b, compressible=True,
velocity_input=u_bary, density_input=ρ_b, force_model=ForceModel.GUO,
force=f_b, kernel_type='collide_only')
collision_a = create_lb_update_rule(lbm_config=lbm_config_a,
optimization={'symbolic_field': src_a})
collision_b = create_lb_update_rule(lbm_config=lbm_config_b,
optimization={'symbolic_field': src_b})
```
%% Cell type:code id: tags:
``` python
stream_a = create_stream_pull_with_output_kernel(collision_a.method, src_a, dst_a,
{'density': ρ_a, 'velocity': u_a})
stream_b = create_stream_pull_with_output_kernel(collision_b.method, src_b, dst_b,
{'density': ρ_b, 'velocity': u_b})
config = ps.CreateKernelConfig(target=dh.default_target)
stream_a_kernel = ps.create_kernel(stream_a, config=config).compile()
stream_b_kernel = ps.create_kernel(stream_b, config=config).compile()
collision_a_kernel = ps.create_kernel(collision_a, config=config).compile()
collision_b_kernel = ps.create_kernel(collision_b, config=config).compile()
force_kernel = ps.create_kernel(f_expressions, config=config).compile()
u_kernel = ps.create_kernel(u_full, config=config).compile()
```
%% Cell type:markdown id: tags:
## Initialization
%% Cell type:code id: tags:
``` python
init_a = macroscopic_values_setter(collision_a.method, velocity=(0, 0),
pdfs=src_a.center_vector, density=ρ_a.center)
init_b = macroscopic_values_setter(collision_b.method, velocity=(0, 0),
pdfs=src_b.center_vector, density=ρ_b.center)
init_a_kernel = ps.create_kernel(init_a, ghost_layers=0).compile()
init_b_kernel = ps.create_kernel(init_b, ghost_layers=0).compile()
dh.run_kernel(init_a_kernel)
dh.run_kernel(init_b_kernel)
```
%% Cell type:code id: tags:
``` python
def init():
dh.fill(ρ_a.name, 0.1, slice_obj=ps.make_slice[:, :0.5])
dh.fill(ρ_a.name, 0.9, slice_obj=ps.make_slice[:, 0.5:])
dh.fill(ρ_b.name, 0.9, slice_obj=ps.make_slice[:, :0.5])
dh.fill(ρ_b.name, 0.1, slice_obj=ps.make_slice[:, 0.5:])
dh.fill(f_a.name, 0.0)
dh.fill(f_b.name, 0.0)
dh.run_kernel(init_a_kernel)
dh.run_kernel(init_b_kernel)
dh.fill(u_a.name, 0.0)
dh.fill(u_b.name, 0.0)
```
%% Cell type:markdown id: tags:
## Timeloop
%% Cell type:code id: tags:
``` python
sync_pdfs = dh.synchronization_function([src_a.name, src_b.name])
sync_ρs = dh.synchronization_function([ρ_a.name, ρ_b.name])
def time_loop(steps):
dh.all_to_gpu()
for i in range(steps):
sync_ρs() # force values depend on neighboring ρ's
dh.run_kernel(force_kernel)
dh.run_kernel(u_kernel)
dh.run_kernel(collision_a_kernel)
dh.run_kernel(collision_b_kernel)
sync_pdfs()
dh.run_kernel(stream_a_kernel)
dh.run_kernel(stream_b_kernel)
dh.swap(src_a.name, dst_a.name)
dh.swap(src_b.name, dst_b.name)
dh.all_to_cpu()
```
%% Cell type:code id: tags:
``` python
def plot_ρs():
plt.figure(dpi=200)
plt.subplot(1,2,1)
plt.title("$\\rho_A$")
plt.scalar_field(dh.gather_array(ρ_a.name), vmin=0, vmax=2)
plt.colorbar()
plt.subplot(1,2,2)
plt.title("$\\rho_B$")
plt.scalar_field(dh.gather_array(ρ_b.name), vmin=0, vmax=2)
plt.colorbar()
```
%% Cell type:markdown id: tags:
## Run the simulation
### Initial state
%% Cell type:code id: tags:
``` python
init()
plot_ρs()
```
%%%% Output: display_data
![]()
%% Cell type:markdown id: tags:
### Run the simulation until converged
%% Cell type:code id: tags:
``` python
init()
time_loop(10000)
plot_ρs()
```
%%%% Output: display_data
![]()
%% Cell type:code id: tags:
``` python
assert np.isfinite(dh.gather_array(ρ_a.name)).all()
assert np.isfinite(dh.gather_array(ρ_b.name)).all()
```
......
......@@ -2,7 +2,7 @@ import numpy as np
import sympy as sp
import pystencils as ps
from pystencils.data_types import TypedSymbol, create_type
from pystencils.typing import TypedSymbol, create_type
from pystencils.backends.cbackend import CustomCodeNode
from lbmpy.advanced_streaming.utility import get_accessor, inverse_dir_index, is_inplace, Timestep
......@@ -39,7 +39,7 @@ class BetweenTimestepsIndexing:
# =============================
def __init__(self, pdf_field, stencil, prev_timestep=Timestep.BOTH, streaming_pattern='pull',
index_dtype=np.int64, offsets_dtype=np.int64):
index_dtype=np.int32, offsets_dtype=np.int32):
if prev_timestep == Timestep.BOTH and is_inplace(streaming_pattern):
raise ValueError('Cannot create index arrays for both kinds of timesteps for inplace streaming pattern '
+ streaming_pattern)
......@@ -213,9 +213,9 @@ class NeighbourOffsetArrays(CustomCodeNode):
@staticmethod
def _offset_symbols(dim):
return [TypedSymbol(f"neighbour_offset_{d}", create_type(np.int64)) for d in ['x', 'y', 'z'][:dim]]
return [TypedSymbol(f"neighbour_offset_{d}", create_type(np.int32)) for d in ['x', 'y', 'z'][:dim]]
def __init__(self, stencil, offsets_dtype=np.int64):
def __init__(self, stencil, offsets_dtype=np.int32):
offsets_dtype = create_type(offsets_dtype)
dim = len(stencil[0])
......@@ -242,9 +242,9 @@ class MirroredStencilDirections(CustomCodeNode):
@staticmethod
def _mirrored_symbol(mirror_axis):
axis = ['x', 'y', 'z']
return TypedSymbol(f"{axis[mirror_axis]}_axis_mirrored_stencil_dir", create_type(np.int64))
return TypedSymbol(f"{axis[mirror_axis]}_axis_mirrored_stencil_dir", create_type(np.int32))
def __init__(self, stencil, mirror_axis, dtype=np.int64):
def __init__(self, stencil, mirror_axis, dtype=np.int32):
offsets_dtype = create_type(dtype)
mirrored_stencil_symbol = MirroredStencilDirections._mirrored_symbol(mirror_axis)
......
......@@ -6,7 +6,6 @@ from lbmpy.advanced_streaming.utility import Timestep, get_accessor
from pystencils.boundaries.boundaryhandling import BoundaryOffsetInfo
from pystencils.assignment import Assignment
from pystencils.astnodes import Block, Conditional, LoopOverCoordinate, SympyAssignment
from pystencils.data_types import type_all_numbers
from pystencils.simp.assignment_collection import AssignmentCollection
from pystencils.simp.simplifications import sympy_cse_on_assignment_list
from pystencils.stencil import inverse_direction
......@@ -48,14 +47,14 @@ def border_conditions(direction, field, ghost_layers=1):
border_condition = sp.Eq(loop_ctr, gl if val < 0 else field.shape[idx] - gl - 1)
if ghost_layers == 0:
return type_all_numbers(border_condition, loop_ctr.dtype)
return border_condition
else:
other_min = [sp.Ge(c, gl)
for c in loop_ctrs if c != loop_ctr]
other_max = [sp.Lt(c, field.shape[i] - gl)
for i, c in enumerate(loop_ctrs) if c != loop_ctr]
result = sp.And(border_condition, *other_min, *other_max)
return type_all_numbers(result, loop_ctr.dtype)
return result
def boundary_conditional(boundary, direction, streaming_pattern, prev_timestep, lb_method, output_field, cse=False):
......
......@@ -5,7 +5,7 @@ from lbmpy.advanced_streaming.utility import AccessPdfValues, Timestep
from pystencils.simp.assignment_collection import AssignmentCollection
from pystencils import Assignment, Field
from lbmpy.boundaries.boundaryhandling import LbmWeightInfo
from pystencils.data_types import create_type
from pystencils.typing import create_type
from pystencils.sympyextensions import get_symmetric_part
from lbmpy.simplificationfactory import create_simplification_strategy
from lbmpy.advanced_streaming.indexing import NeighbourOffsetArrays, MirroredStencilDirections
......
......@@ -4,7 +4,7 @@ from lbmpy.advanced_streaming.indexing import BetweenTimestepsIndexing
from lbmpy.advanced_streaming.utility import is_inplace, Timestep, AccessPdfValues
from pystencils import Field, Assignment, TypedSymbol, create_kernel
from pystencils.stencil import inverse_direction
from pystencils import Target
from pystencils import CreateKernelConfig, Target
from pystencils.boundaries import BoundaryHandling
from pystencils.boundaries.createindexlist import numpy_data_type_for_boundary_object
from pystencils.backends.cbackend import CustomCodeNode
......@@ -185,7 +185,7 @@ def create_lattice_boltzmann_boundary_kernel(pdf_field, index_field, lb_method,
target=Target.CPU, **kernel_creation_args):
indexing = BetweenTimestepsIndexing(
pdf_field, lb_method.stencil, prev_timestep, streaming_pattern, np.int64, np.int64)
pdf_field, lb_method.stencil, prev_timestep, streaming_pattern, np.int32, np.int32)
f_out, f_in = indexing.proxy_fields
dir_symbol = indexing.dir_symbol
......@@ -198,7 +198,10 @@ def create_lattice_boltzmann_boundary_kernel(pdf_field, index_field, lb_method,
elements = [Assignment(dir_symbol, index_field[0]('dir'))]
elements += boundary_assignments.all_assignments
kernel = create_kernel(elements, index_fields=[index_field], target=target, **kernel_creation_args)
config = CreateKernelConfig(index_fields=[index_field], target=target, default_number_int="int32",
skip_independence_check=True, **kernel_creation_args)
kernel = create_kernel(elements, config=config)
# Code Elements ahead of the loop
index_arrs_node = indexing.create_code_node()
......
......@@ -77,9 +77,9 @@ from lbmpy.stencils import LBStencil
from lbmpy.turbulence_models import add_smagorinsky_model
from lbmpy.updatekernels import create_lbm_kernel, create_stream_pull_with_output_kernel
from lbmpy.advanced_streaming.utility import Timestep, get_accessor
from pystencils import create_kernel, CreateKernelConfig
from pystencils import CreateKernelConfig, create_kernel
from pystencils.cache import disk_cache_no_fallback
from pystencils.data_types import collate_types
from pystencils.typing import collate_types
from pystencils.field import Field
from pystencils.simp import sympy_cse, SimplificationStrategy
# needed for the docstring
......@@ -549,7 +549,7 @@ def create_lb_update_rule(collision_rule=None, lbm_config=None, lbm_optimisation
lb_method = collision_rule.method
field_data_type = config.data_type
field_data_type = config.data_type[lbm_config.field_name].numpy_dtype
q = collision_rule.method.stencil.Q
if lbm_optimisation.symbolic_field is not None:
......@@ -768,6 +768,7 @@ def update_with_default_parameters(params, opt_params=None, lbm_config=None, lbm
config_params = {k: v for k, v in opt_params.items() if k in pystencils_config_params}
else:
config_params = {}
if 'double_precision' in config_params:
if config_params['double_precision']:
config_params['data_type'] = 'float64'
......
......@@ -56,10 +56,8 @@ class LatticeBoltzmannStep:
lbm_config, lbm_optimisation, config = update_with_default_parameters(method_parameters, optimization,
lbm_config, lbm_optimisation, config)
# the parallel datahandling understands only numpy datatypes. Strings lead to an error.
field_dtype = np.float64
if config.data_type == 'float' or config.data_type == 'float32':
field_dtype = np.float32
# the parallel datahandling understands only numpy datatypes. Strings lead to an errors
field_dtype = config.data_type.default_factory().numpy_dtype
if lbm_kernel:
q = lbm_kernel.method.stencil.Q
......
import functools
from copy import deepcopy
from lbmpy.simplificationfactory import create_simplification_strategy
from pystencils import create_kernel, CreateKernelConfig
from pystencils.field import Field, get_layout_of_array
from pystencils.enums import Target
......@@ -131,16 +132,8 @@ def compile_macroscopic_values_getter(lb_method, output_quantities, pdf_arr=None
eqs = cqc.output_equations_from_pdfs(pdf_symbols, output_mapping).all_assignments
if target == Target.CPU:
import pystencils.cpu as cpu
kernel = cpu.make_python_function(cpu.create_kernel(
eqs, ghost_layers=ghost_layers, iteration_slice=iteration_slice))
elif target == Target.GPU:
import pystencils.gpucuda as gpu
kernel = gpu.make_python_function(gpu.create_cuda_kernel(
eqs, ghost_layers=ghost_layers, iteration_slice=iteration_slice))
else:
raise ValueError("Unknown target '%s'. Possible targets are `Target.CPU` and `Target.GPU`" % (target,))
config = CreateKernelConfig(target=target, ghost_layers=ghost_layers, iteration_slice=iteration_slice)
kernel = create_kernel(eqs, config=config).compile()
def getter(pdfs, **kwargs):
if pdf_arr is not None:
......@@ -216,16 +209,9 @@ def compile_macroscopic_values_setter(lb_method, quantities_to_set, pdf_arr=None
substitutions = {sym: write_accesses[i] for i, sym in enumerate(lb_method.post_collision_pdf_symbols)}
eq = eq.new_with_substitutions(substitutions).all_assignments
if target == Target.CPU:
import pystencils.cpu as cpu
kernel = cpu.make_python_function(cpu.create_kernel(eq))
kernel = functools.partial(kernel, **fixed_kernel_parameters)
elif target == Target.GPU:
import pystencils.gpucuda as gpu
kernel = gpu.make_python_function(gpu.create_cuda_kernel(eq))
kernel = functools.partial(kernel, **fixed_kernel_parameters)
else:
raise ValueError("Unknown target '%s'. Possible targets are `Target.CPU` and `Target.GPU`" % (target,))
config = CreateKernelConfig(target=target)
kernel = create_kernel(eq, config=config).compile()
kernel = functools.partial(kernel, **fixed_kernel_parameters)
def setter(pdfs, **kwargs):
if pdf_arr is not None:
......
......@@ -109,7 +109,7 @@ class Flux(Boundary):
a[i] *= a[i].args[0]
assignments.append(ps.Assignment(a[i], fac * val[i]))
if len(assignments) > 0:
conditional = ps.astnodes.Conditional(ps.data_types.type_all_numbers(c, "int"),
conditional = ps.astnodes.Conditional(c,
ps.astnodes.Block