Newer
Older
import numpy as np
import sympy as sp
import pystencils as ps
from pystencils.backends.simd_instruction_sets import get_supported_instruction_sets
from pystencils.cpu.vectorization import vectorize
from pystencils.fast_approximation import insert_fast_sqrts, insert_fast_divisions
from pystencils.transformations import replace_inner_stride_with_one
def test_vector_type_propagation():
a, b, c, d, e = sp.symbols("a b c d e")
arr = np.ones((2 ** 2 + 2, 2 ** 3 + 2))
arr *= 10.0
f, g = ps.fields(f=arr, g=arr)
update_rule = [ps.Assignment(a, f[1, 0]),
ps.Assignment(b, a),
ps.Assignment(g[0, 0], b + 3 + f[0, 1])]
ast = ps.create_kernel(update_rule)
vectorize(ast)
func = ast.compile()
dst = np.zeros_like(arr)
func(g=dst, f=arr)
np.testing.assert_equal(dst[1:-1, 1:-1], 2 * 10.0 + 3)
def test_inplace_update():
shape = (9, 9, 3)
arr = np.ones(shape, order='f')
@ps.kernel
def update_rule(s):
f = ps.fields("f(3) : [2D]", f=arr)
s.tmp0 @= f(0)
s.tmp1 @= f(1)
s.tmp2 @= f(2)
f0, f1, f2 = f(0), f(1), f(2)
f0 @= 2 * s.tmp0
f1 @= 2 * s.tmp0
f2 @= 2 * s.tmp0
ast = ps.create_kernel(update_rule, cpu_vectorize_info={'instruction_set': 'avx'})
kernel = ast.compile()
kernel(f=arr)
np.testing.assert_equal(arr, 2)
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
def test_vectorization_fixed_size():
configurations = []
# Fixed size - multiple of four
arr = np.ones((20 + 2, 24 + 2)) * 5.0
f, g = ps.fields(f=arr, g=arr)
configurations.append((arr, f, g))
# Fixed size - no multiple of four
arr = np.ones((21 + 2, 25 + 2)) * 5.0
f, g = ps.fields(f=arr, g=arr)
configurations.append((arr, f, g))
# Fixed size - different remainder
arr = np.ones((23 + 2, 17 + 2)) * 5.0
f, g = ps.fields(f=arr, g=arr)
configurations.append((arr, f, g))
for arr, f, g in configurations:
update_rule = [ps.Assignment(g[0, 0], f[0, 0] + f[-1, 0] + f[1, 0] + f[0, 1] + f[0, -1] + 42.0)]
ast = ps.create_kernel(update_rule)
vectorize(ast)
func = ast.compile()
dst = np.zeros_like(arr)
func(g=dst, f=arr)
np.testing.assert_equal(dst[1:-1, 1:-1], 5 * 5.0 + 42.0)
def test_vectorization_variable_size():
f, g = ps.fields("f, g : double[2D]")
update_rule = [ps.Assignment(g[0, 0], f[0, 0] + f[-1, 0] + f[1, 0] + f[0, 1] + f[0, -1] + 42.0)]
ast = ps.create_kernel(update_rule)
replace_inner_stride_with_one(ast)
vectorize(ast)
func = ast.compile()
arr = np.ones((23 + 2, 17 + 2)) * 5.0
dst = np.zeros_like(arr)
func(g=dst, f=arr)
np.testing.assert_equal(dst[1:-1, 1:-1], 5 * 5.0 + 42.0)
def test_piecewise1():
a, b, c, d, e = sp.symbols("a b c d e")
arr = np.ones((2 ** 3 + 2, 2 ** 4 + 2)) * 5.0
f, g = ps.fields(f=arr, g=arr)
update_rule = [ps.Assignment(a, f[1, 0]),
ps.Assignment(b, a),
ps.Assignment(c, f[0, 0] > 0.0),
ps.Assignment(g[0, 0], sp.Piecewise((b + 3 + f[0, 1], c), (0.0, True)))]
ast = ps.create_kernel(update_rule)
vectorize(ast)
func = ast.compile()
dst = np.zeros_like(arr)
func(g=dst, f=arr)
np.testing.assert_equal(dst[1:-1, 1:-1], 5 + 3 + 5.0)
def test_piecewise2():
arr = np.zeros((20, 20))
@ps.kernel
def test_kernel(s):
f, g = ps.fields(f=arr, g=arr)
s.condition @= f[0, 0] > 1
s.result @= 0.0 if s.condition else 1.0
g[0, 0] @= s.result
ast = ps.create_kernel(test_kernel)
vectorize(ast)
func = ast.compile()
func(f=arr, g=arr)
np.testing.assert_equal(arr, np.ones_like(arr))
def test_piecewise3():
arr = np.zeros((22, 22))
@ps.kernel
def test_kernel(s):
f, g = ps.fields(f=arr, g=arr)
s.b @= f[0, 1]
g[0, 0] @= 1.0 / (s.b + s.k) if f[0, 0] > 0.0 else 1.0
ast = ps.create_kernel(test_kernel)
vectorize(ast)
ast.compile()
def test_logical_operators():
arr = np.zeros((22, 22))
@ps.kernel
f, g = ps.fields(f=arr, g=arr)
s.c @= sp.And(f[0, 1] < 0.0, f[1, 0] < 0.0)
g[0, 0] @= sp.Piecewise([1.0 / f[1, 0], s.c], [1.0, True])
ast = ps.create_kernel(kernel_and)
vectorize(ast)
ast.compile()
@ps.kernel
def kernel_or(s):
f, g = ps.fields(f=arr, g=arr)
s.c @= sp.Or(f[0, 1] < 0.0, f[1, 0] < 0.0)
g[0, 0] @= sp.Piecewise([1.0 / f[1, 0], s.c], [1.0, True])
ast = ps.create_kernel(kernel_or)
vectorize(ast)
ast.compile()
@ps.kernel
def kernel_equal(s):
f, g = ps.fields(f=arr, g=arr)
s.c @= sp.Eq(f[0, 1], 2.0)
g[0, 0] @= sp.Piecewise([1.0 / f[1, 0], s.c], [1.0, True])
ast = ps.create_kernel(kernel_equal)
vectorize(ast)
ast.compile()
def test_hardware_query():
instruction_sets = get_supported_instruction_sets()
assert 'sse' in instruction_sets
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
def test_vectorised_pow():
arr = np.zeros((24, 24))
f, g = ps.fields(f=arr, g=arr)
as1 = ps.Assignment(g[0, 0], sp.Pow(f[0, 0], 2))
as2 = ps.Assignment(g[0, 0], sp.Pow(f[0, 0], 0.5))
as3 = ps.Assignment(g[0, 0], sp.Pow(f[0, 0], -0.5))
as4 = ps.Assignment(g[0, 0], sp.Pow(f[0, 0], 4))
as5 = ps.Assignment(g[0, 0], sp.Pow(f[0, 0], -4))
as6 = ps.Assignment(g[0, 0], sp.Pow(f[0, 0], -1))
ast = ps.create_kernel(as1)
vectorize(ast)
ast.compile()
ast = ps.create_kernel(as2)
vectorize(ast)
ast.compile()
ast = ps.create_kernel(as3)
vectorize(ast)
ast.compile()
ast = ps.create_kernel(as4)
vectorize(ast)
ast.compile()
ast = ps.create_kernel(as5)
vectorize(ast)
ast.compile()
ast = ps.create_kernel(as6)
vectorize(ast)
ast.compile()
def test_vectorised_fast_approximations():
arr = np.zeros((24, 24))
f, g = ps.fields(f=arr, g=arr)
expr = sp.sqrt(f[0, 0] + f[1, 0])
assignment = ps.Assignment(g[0, 0], insert_fast_sqrts(expr))
ast = ps.create_kernel(assignment)
vectorize(ast)
ast.compile()
expr = f[0, 0] / f[1, 0]
assignment = ps.Assignment(g[0, 0], insert_fast_divisions(expr))
ast = ps.create_kernel(assignment)
vectorize(ast)
ast.compile()
assignment = ps.Assignment(sp.Symbol("tmp"), 3 / sp.sqrt(f[0, 0] + f[1, 0]))
ast = ps.create_kernel(insert_fast_sqrts(assignment))
vectorize(ast)
ast.compile()