Skip to content
Snippets Groups Projects
test_indexed_kernels.py 2.13 KiB
Newer Older
Markus Holzer's avatar
Markus Holzer committed
import pystencils as ps
Markus Holzer's avatar
Markus Holzer committed
from pystencils import Assignment, Field, CreateKernelConfig, create_kernel, Target


def test_indexed_kernel():
    arr = np.zeros((3, 4))
    dtype = np.dtype([('x', int), ('y', int), ('value', arr.dtype)])
    index_arr = np.zeros((3,), dtype=dtype)
    index_arr[0] = (0, 2, 3.0)
    index_arr[1] = (1, 3, 42.0)
    index_arr[2] = (2, 1, 5.0)

    indexed_field = Field.create_from_numpy_array('index', index_arr)
    normal_field = Field.create_from_numpy_array('f', arr)
    update_rule = Assignment(normal_field[0, 0], indexed_field('value'))
Markus Holzer's avatar
Markus Holzer committed

    config = CreateKernelConfig(index_fields=[indexed_field])
    ast = create_kernel([update_rule], config=config)
    kernel = ast.compile()
    kernel(f=arr, index=index_arr)
Markus Holzer's avatar
Markus Holzer committed
    code = ps.get_code_str(kernel)
    for i in range(index_arr.shape[0]):
        np.testing.assert_allclose(arr[index_arr[i]['x'], index_arr[i]['y']], index_arr[i]['value'], atol=1e-13)


def test_indexed_cuda_kernel():
    try:
        import pycuda
    except ImportError:
        pycuda = None

    if pycuda:
        import pycuda.gpuarray as gpuarray

        arr = np.zeros((3, 4))
        dtype = np.dtype([('x', int), ('y', int), ('value', arr.dtype)])
        index_arr = np.zeros((3,), dtype=dtype)
        index_arr[0] = (0, 2, 3.0)
        index_arr[1] = (1, 3, 42.0)
        index_arr[2] = (2, 1, 5.0)

        indexed_field = Field.create_from_numpy_array('index', index_arr)
        normal_field = Field.create_from_numpy_array('f', arr)
        update_rule = Assignment(normal_field[0, 0], indexed_field('value'))
Markus Holzer's avatar
Markus Holzer committed

        config = CreateKernelConfig(target=Target.GPU, index_fields=[indexed_field])
        ast = create_kernel([update_rule], config=config)
        kernel = ast.compile()

        gpu_arr = gpuarray.to_gpu(arr)
        gpu_index_arr = gpuarray.to_gpu(index_arr)
        kernel(f=gpu_arr, index=gpu_index_arr)
        gpu_arr.get(arr)
        for i in range(index_arr.shape[0]):
            np.testing.assert_allclose(arr[index_arr[i]['x'], index_arr[i]['y']], index_arr[i]['value'], atol=1e-13)
    else:
        print("Did not run test on GPU since no pycuda is available")