Newer
Older
import numpy as np
from pystencils.alignedarray import aligned_zeros
from pystencils.astnodes import Block, Conditional, SympyAssignment
from pystencils.backends.simd_instruction_sets import get_supported_instruction_sets, get_vector_instruction_set
from pystencils.cpu.vectorization import vec_all, vec_any
from pystencils.node_collection import NodeCollection
supported_instruction_sets = get_supported_instruction_sets() if get_supported_instruction_sets() else []
@pytest.mark.parametrize('instruction_set', supported_instruction_sets)
@pytest.mark.parametrize('dtype', ('float32', 'float64'))
if instruction_set in ['sve', 'sve2', 'sme', 'rvv']:
width = 4 # we don't know the actual value
else:
width = get_vector_instruction_set(dtype, instruction_set)['width']
data_arr = np.zeros((4 * width, 4 * width), dtype=dtype)
data = ps.fields(f"data: {dtype}[2D]", data=data_arr)
c = [
SympyAssignment(sp.Symbol("t1"), vec_any(data.center() > 0.0)),
Conditional(vec_any(data.center() > 0.0), Block([SympyAssignment(data.center(), 2.0)]))
assignmets = NodeCollection(c)
ast = ps.create_kernel(assignments=assignmets, target=ps.Target.CPU,
kernel = ast.compile()
kernel(data=data_arr)
if instruction_set in ['sve', 'sve2', 'sme', 'rvv']:
np.testing.assert_equal(data_arr[3:9, :3 * width - 1], 2.0)
np.testing.assert_equal(data_arr[3:9, :3 * width], 2.0)
@pytest.mark.parametrize('instruction_set', supported_instruction_sets)
@pytest.mark.parametrize('dtype', ('float32', 'float64'))
if instruction_set in ['sve', 'sve2', 'sme', 'rvv']:
width = 1000 # we don't know the actual value, need something guaranteed larger than vector
else:
width = get_vector_instruction_set(dtype, instruction_set)['width']
data_arr = np.zeros((4 * width, 4 * width), dtype=dtype)
data = ps.fields(f"data: {dtype}[2D]", data=data_arr)
c = [Conditional(vec_all(data.center() > 0.0), Block([SympyAssignment(data.center(), 2.0)]))]
assignmets = NodeCollection(c)
ast = ps.create_kernel(assignmets, target=Target.CPU,
cpu_vectorize_info={'instruction_set': instruction_set})
kernel = ast.compile()
kernel(data=data_arr)
if instruction_set in ['sve', 'sve2', 'sme', 'rvv']:
# we only know that some values in the middle have been replaced
assert np.all(data_arr[3:9, :2] <= 1.0)
assert np.any(data_arr[3:9, 2:] == 2.0)
else:
np.testing.assert_equal(data_arr[3:9, :1], 0.0)
np.testing.assert_equal(data_arr[3:9, 1:width], 1.0)
np.testing.assert_equal(data_arr[3:9, width:2 * width], 2.0)
np.testing.assert_equal(data_arr[3:9, 2 * width:3 * width - 1], 1.0)
np.testing.assert_equal(data_arr[3:9, 3 * width - 1:], 0.0)
@pytest.mark.skipif(not supported_instruction_sets, reason='cannot detect CPU instruction set')
def test_boolean_before_loop():
t1, t2 = sp.symbols('t1, t2')
f_arr = np.ones((10, 10))
g_arr = np.zeros_like(f_arr)
f, g = ps.fields("f, g : double[2D]", f=f_arr, g=g_arr)
a = [
ps.Assignment(t1, t2 > 0),
ps.Assignment(g[0, 0],
sp.Piecewise((f[0, 0], t1), (42, True)))
]
ast = ps.create_kernel(a, cpu_vectorize_info={'instruction_set': supported_instruction_sets[-1]})
kernel = ast.compile()
kernel(f=f_arr, g=g_arr, t2=1.0)
np.testing.assert_array_equal(g_arr, 1.0)
kernel(f=f_arr, g=g_arr, t2=-1.0)
np.testing.assert_array_equal(g_arr, 42.0)

Michael Kuron
committed
@pytest.mark.parametrize('instruction_set', supported_instruction_sets)
@pytest.mark.parametrize('dtype', ('float32', 'float64'))
@pytest.mark.parametrize('nontemporal', [False, True])
@pytest.mark.parametrize('aligned', [False, True])
def test_vec_maskstore(instruction_set, dtype, nontemporal, aligned):
data_arr = (aligned_zeros if aligned else np.zeros)((16, 16), dtype=dtype)

Michael Kuron
committed
data = ps.fields(f"data: {dtype}[2D]", data=data_arr)
c = [Conditional(data.center() < 1.0, Block([SympyAssignment(data.center(), 2.0)]))]
assignmets = NodeCollection(c)
config = ps.CreateKernelConfig(cpu_vectorize_info={'instruction_set': instruction_set,
'nontemporal': nontemporal,
'assume_aligned': aligned},
default_number_float=dtype)
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
if 'maskStore' in ast.instruction_set:
instruction = 'maskStream' if nontemporal and 'maskStream' in ast.instruction_set else (
'maskStoreA' if aligned and 'maskStoreA' in ast.instruction_set else 'maskStore')
assert ast.instruction_set[instruction].split('{')[0] in ps.get_code_str(ast)
print(ps.get_code_str(ast))
kernel = ast.compile()
kernel(data=data_arr)
np.testing.assert_equal(data_arr[:3, :], 2.0)
np.testing.assert_equal(data_arr[-3:, :], 2.0)
np.testing.assert_equal(data_arr[:, :3], 2.0)
np.testing.assert_equal(data_arr[:, -3:], 2.0)
np.testing.assert_equal(data_arr[3:-3, 3:-3], 1.0)
@pytest.mark.parametrize('instruction_set', supported_instruction_sets)
@pytest.mark.parametrize('dtype', ('float32', 'float64'))
@pytest.mark.parametrize('nontemporal', [False, True])
def test_vec_maskscatter(instruction_set, dtype, nontemporal):
data_arr = np.zeros((16, 16), dtype=dtype)
data_arr[3:-3, 3:-3] = 1.0
data = ps.fields(f"data: {dtype}[2D]")
c = [Conditional(data.center() < 1.0, Block([SympyAssignment(data.center(), 2.0)]))]
assignmets = NodeCollection(c)
config = ps.CreateKernelConfig(cpu_vectorize_info={'instruction_set': instruction_set,
'nontemporal': nontemporal},
default_number_float=dtype)
if 'maskStoreS' not in get_vector_instruction_set(dtype, instruction_set) \
and not instruction_set.startswith('sve'):
with pytest.warns(UserWarning) as warn:
ast = ps.create_kernel(assignmets, config=config)
assert 'Could not vectorize loop' in warn[0].message.args[0]
else:
with pytest.warns(None) as warn:
ast = ps.create_kernel(assignmets, config=config)
assert len(warn) == 0
instruction = 'maskStreamS' if nontemporal and 'maskStreamS' in ast.instruction_set else 'maskStoreS'
assert ast.instruction_set[instruction].split('{')[0] in ps.get_code_str(ast)

Michael Kuron
committed
kernel = ast.compile()
kernel(data=data_arr)
np.testing.assert_equal(data_arr[:3, :], 2.0)
np.testing.assert_equal(data_arr[-3:, :], 2.0)
np.testing.assert_equal(data_arr[:, :3], 2.0)
np.testing.assert_equal(data_arr[:, -3:], 2.0)
np.testing.assert_equal(data_arr[3:-3, 3:-3], 1.0)