Newer
Older
import os
from tempfile import TemporaryDirectory
import pystencils as ps
from pystencils import create_data_handling, create_kernel
from pystencils.gpu.gpu_array_handler import GPUArrayHandler
try:
import pytest
except ImportError:
import unittest.mock
pytest = unittest.mock.MagicMock()
try:
import cupy.cuda.runtime
device_numbers = range(cupy.cuda.runtime.getDeviceCount())
except ImportError:
device_numbers = []
SCRIPT_FOLDER = Path(__file__).parent.absolute()
INPUT_FOLDER = SCRIPT_FOLDER / "test_data"
def basic_iteration(dh):
dh.add_array('basic_iter_test_gl_default')
dh.add_array('basic_iter_test_gl_3', ghost_layers=3)
for b in dh.iterate():
assert b.shape == b['basic_iter_test_gl_3'].shape
assert b.shape == b['basic_iter_test_gl_default'].shape
def access_and_gather(dh, domain_size):
dh.add_array_like('f2', 'f1')
dh.add_array('v1', values_per_cell=3, dtype=np.int64, ghost_layers=2)
dh.add_array_like('v2', 'v1')
dh.swap('f1', 'f2')
dh.swap('v1', 'v2')
# Check symbolic field properties
assert dh.fields.f1.index_dimensions == 0
assert dh.fields.f1.spatial_dimensions == len(domain_size)
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
assert dh.fields.v1.index_dimensions == 1
assert dh.fields.v1.spatial_dimensions == len(domain_size)
assert dh.fields.v1.dtype.numpy_dtype == np.int64
for b in dh.iterate(ghost_layers=0):
val = sum(b.cell_index_arrays)
np.copyto(b['f1'], val)
for i, coord_arr in enumerate(b.cell_index_arrays):
np.copyto(b['v1'][..., i], coord_arr)
full_arr = dh.gather_array('v1')
if full_arr is not None:
expected_shape = domain_size + (3,)
assert full_arr.shape == expected_shape
for x in range(full_arr.shape[0]):
for y in range(full_arr.shape[1]):
if len(domain_size) == 3:
for z in range(full_arr.shape[2]):
assert full_arr[x, y, z, 0] == x
assert full_arr[x, y, z, 1] == y
assert full_arr[x, y, z, 2] == z
else:
assert len(domain_size) == 2
assert full_arr[x, y, 0] == x
assert full_arr[x, y, 1] == y
full_arr = dh.gather_array('f1')
if full_arr is not None:
expected_shape = domain_size
assert full_arr.shape == expected_shape
for x in range(full_arr.shape[0]):
for y in range(full_arr.shape[1]):
if len(domain_size) == 3:
for z in range(full_arr.shape[2]):
assert full_arr[x, y, z] == x + y + z
else:
assert len(domain_size) == 2
assert full_arr[x, y] == x + y
def synchronization(dh, test_gpu=False):
field_name = 'comm_field_test'
if test_gpu:
field_name += 'Gpu'
dh.add_array(field_name, ghost_layers=1, dtype=np.int8, cpu=True, gpu=test_gpu)
# initialize everything with 1
for b in dh.iterate(ghost_layers=1):
b[field_name].fill(1)
for b in dh.iterate(ghost_layers=0):
b[field_name].fill(42)
if test_gpu:
dh.to_gpu(field_name)
dh.synchronization_function_gpu(field_name)()
else:
dh.synchronization_function_cpu(field_name)()
if test_gpu:
dh.to_cpu(field_name)
for b in dh.iterate(ghost_layers=1):
np.testing.assert_equal(42, b[field_name])
def kernel_execution_jacobi(dh, target):
dh.add_array('f', gpu=test_gpu)
dh.add_array('tmp', gpu=test_gpu)
if test_gpu:
assert dh.is_on_gpu('f')
assert dh.is_on_gpu('tmp')
stencil_2d = [(1, 0), (-1, 0), (0, 1), (0, -1)]
stencil_3d = [(1, 0, 0), (-1, 0, 0), (0, 1, 0), (0, -1, 0), (0, 0, 1), (0, 0, -1)]
stencil = stencil_2d if dh.dim == 2 else stencil_3d
@ps.kernel
def jacobi():
dh.fields.tmp.center @= sum(dh.fields.f.neighbors(stencil)) / len(stencil)
kernel = create_kernel(jacobi, config=ps.CreateKernelConfig(target=target)).compile()
for b in dh.iterate(ghost_layers=1):
b['f'].fill(42)
dh.run_kernel(kernel)
for b in dh.iterate(ghost_layers=0):
np.testing.assert_equal(b['f'], 42)
def vtk_output(dh):
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
dh.add_array('scalar_field')
dh.add_array('vector_field', values_per_cell=dh.dim)
dh.add_array('multiple_scalar_field', values_per_cell=9)
dh.add_array('flag_field', dtype=np.uint16)
fields_names = ['scalar_field', 'vector_field', 'multiple_scalar_field', 'flag_field']
with TemporaryDirectory() as tmp_dir:
writer1 = dh.create_vtk_writer(os.path.join(tmp_dir, "out1"), fields_names, ghost_layers=True)
writer2 = dh.create_vtk_writer(os.path.join(tmp_dir, "out2"), fields_names, ghost_layers=False)
masks_to_name = {1: 'flag1', 5: 'some_mask'}
writer3 = dh.create_vtk_writer_for_flag_array(os.path.join(tmp_dir, "out3"), 'flag_field', masks_to_name)
writer1(1)
writer2(1)
writer3(1)
def reduction(dh):
float_seq = [1.0, 2.0, 3.0]
int_seq = [1, 2, 3]
for op in ('min', 'max', 'sum'):
assert (dh.reduce_float_sequence(float_seq, op) == float_seq).all()
assert (dh.reduce_int_sequence(int_seq, op) == int_seq).all()
def test_symbolic_fields():
dh = create_data_handling(domain_size=(5, 7))
dh.add_array('f1', values_per_cell=dh.dim)
assert dh.fields['f1'].spatial_dimensions == dh.dim
assert dh.fields['f1'].index_dimensions == 1
dh.add_array_like("f_tmp", "f1", latex_name=r"f_{tmp}")
assert dh.fields['f_tmp'].spatial_dimensions == dh.dim
assert dh.fields['f_tmp'].index_dimensions == 1
dh.swap('f1', 'f_tmp')
def test_access():
for domain_shape in [(2, 3, 4), (2, 4)]:
for f_size in (1, 4):
dh = create_data_handling(domain_size=domain_shape)
dh.add_array('f1', values_per_cell=f_size)
assert dh.dim == len(domain_shape)
for b in dh.iterate(ghost_layers=1):
if f_size > 1:
assert b['f1'].shape == tuple(ds+2 for ds in domain_shape) + (f_size,)
else:
assert b['f1'].shape == tuple(ds + 2 for ds in domain_shape)
for b in dh.iterate(ghost_layers=0):
if f_size > 1:
assert b['f1'].shape == domain_shape + (f_size,)
else:
assert b['f1'].shape == domain_shape
def test_access_and_gather():
for domain_shape in [(2, 2, 3), (2, 3)]:
dh = create_data_handling(domain_size=domain_shape, periodicity=True)
access_and_gather(dh, domain_shape)
synchronization(dh, test_gpu=False)
synchronization(dh, test_gpu=True)
def test_kernel():
for domain_shape in [(4, 5), (3, 4, 5)]:
dh = create_data_handling(domain_size=domain_shape, periodicity=True)
dh = create_data_handling(domain_size=domain_shape, periodicity=True)
@pytest.mark.parametrize('target', (Target.CPU, Target.GPU))
def test_kernel_param(target):
for domain_shape in [(4, 5), (3, 4, 5)]:
dh = create_data_handling(domain_size=domain_shape, periodicity=True, default_target=target)
kernel_execution_jacobi(dh, target)
reduction(dh)
def test_vtk_output():
for domain_shape in [(4, 5), (3, 4, 5)]:
dh = create_data_handling(domain_size=domain_shape, periodicity=True)
vtk_output(dh)
def test_add_arrays():
domain_shape = (3, 4, 5)
field_description = 'x, y(9)'
dh = create_data_handling(domain_size=domain_shape, default_ghost_layers=0, default_layout='numpy')
x_, y_ = dh.add_arrays(field_description)
x, y = ps.fields(field_description + ': [3,4,5]')
assert x_ == x
assert y_ == y
assert x == dh.fields['x']
assert y == dh.fields['y']
@pytest.mark.parametrize('shape', [(17, 12), (7, 11, 18)])
@pytest.mark.parametrize('layout', ['zyxf', 'fzyx'])
def test_add_arrays_with_layout(shape, layout):
pytest.importorskip('cupy')
dh = create_data_handling(domain_size=shape, default_layout=layout, default_target=ps.Target.GPU)
f1 = dh.add_array("f1", values_per_cell=19)
dh.fill(f1.name, 1.0)
assert dh.cpu_arrays[f1.name].shape == dh.gpu_arrays[f1.name].shape
assert dh.cpu_arrays[f1.name].strides == dh.gpu_arrays[f1.name].strides
assert dh.cpu_arrays[f1.name].dtype == dh.gpu_arrays[f1.name].dtype
def test_get_kwarg():
domain_shape = (10, 10)
field_description = 'src, dst'
dh = create_data_handling(domain_size=domain_shape, default_ghost_layers=1)
src, dst = dh.add_arrays(field_description)
dh.fill("src", 1.0, ghost_layers=True)
dh.fill("dst", 0.0, ghost_layers=True)
ur = ps.Assignment(src.center, dst.center)
kernel = ps.create_kernel(ur).compile()
kw = dh.get_kernel_kwargs(kernel)
assert np.all(kw[0]['src'] == dh.cpu_arrays['src'])
assert np.all(kw[0]['dst'] == dh.cpu_arrays['dst'])
def test_add_custom_data():
pytest.importorskip('cupy')
import cupy as cp
def cpu_data_create_func():
return np.ones((2, 2), dtype=np.float64)
def gpu_data_create_func():
def cpu_to_gpu_transfer_func(gpuarr, cpuarray):
gpuarr.set(cpuarray)
def gpu_to_cpu_transfer_func(gpuarr, cpuarray):
dh = create_data_handling(domain_size=(10, 10))
dh.add_custom_data('custom_data',
cpu_data_create_func,
gpu_data_create_func,
cpu_to_gpu_transfer_func,
gpu_to_cpu_transfer_func)
assert np.all(dh.custom_data_cpu['custom_data'] == 1)
assert np.all(dh.custom_data_gpu['custom_data'].get() == 0)
dh.to_cpu(name='custom_data')
dh.to_gpu(name='custom_data')
assert 'custom_data' in dh.custom_data_names
def test_log():
dh = create_data_handling(domain_size=(10, 10))
dh.log_on_root()
assert dh.is_root
assert dh.world_rank == 0
def test_save_data():
domain_shape = (2, 2)
dh = create_data_handling(domain_size=domain_shape, default_ghost_layers=1)
dh.add_array("src", values_per_cell=9)
dh.fill("src", 1.0, ghost_layers=True)
dh.add_array("dst", values_per_cell=9)
dh.fill("dst", 1.0, ghost_layers=True)
dh.save_all(str(INPUT_FOLDER) + '/datahandling_save_test')
def test_load_data():
domain_shape = (2, 2)
dh = create_data_handling(domain_size=domain_shape, default_ghost_layers=1)
dh.add_array("src", values_per_cell=9)
dh.fill("src", 0.0, ghost_layers=True)
dh.add_array("dst", values_per_cell=9)
dh.fill("dst", 0.0, ghost_layers=True)
dh.load_all(str(INPUT_FOLDER) + '/datahandling_load_test')
assert np.all(dh.cpu_arrays['src']) == 1
assert np.all(dh.cpu_arrays['dst']) == 1
domain_shape = (3, 3)
dh = create_data_handling(domain_size=domain_shape, default_ghost_layers=1)
dh.add_array("src", values_per_cell=9)
dh.fill("src", 0.0, ghost_layers=True)
dh.add_array("dst", values_per_cell=9)
dh.fill("dst", 0.0, ghost_layers=True)
dh.add_array("dst2", values_per_cell=9)
dh.fill("dst2", 0.0, ghost_layers=True)
dh.load_all(str(INPUT_FOLDER) + '/datahandling_load_test')
assert np.all(dh.cpu_arrays['src']) == 0
assert np.all(dh.cpu_arrays['dst']) == 0
assert np.all(dh.cpu_arrays['dst2']) == 0
@pytest.mark.parametrize("device_number", device_numbers)
def test_array_handler(device_number):
array_handler = GPUArrayHandler(device_number)
zero_array = array_handler.zeros(size)
cpu_array = np.empty(size)
array_handler.download(zero_array, cpu_array)
assert np.all(cpu_array) == 0
ones_array = array_handler.ones(size)
cpu_array = np.empty(size)
array_handler.download(ones_array, cpu_array)
assert np.all(cpu_array) == 1
empty = array_handler.empty(size)
assert empty.strides == (16, 8)
empty = array_handler.empty(shape=size, order="F")
assert empty.strides == (8, 16)
random_array = array_handler.randn(size)
cpu_array = np.empty((20, 40), dtype=np.float64)
gpu_array = array_handler.to_gpu(cpu_array)
assert cpu_array.base is None
assert gpu_array.base is None
assert gpu_array.strides == cpu_array.strides
cpu_array2 = np.empty((20, 40), dtype=np.float64)
cpu_array2 = cpu_array2.swapaxes(0, 1)
gpu_array2 = array_handler.to_gpu(cpu_array2)
assert cpu_array2.base is not None
assert gpu_array2.base is not None
assert gpu_array2.strides == cpu_array2.strides