Skip to content
Snippets Groups Projects
test_timeloop.py 2.5 KiB
Newer Older
import time
import numpy as np

from pystencils import Assignment
from pystencils import create_kernel
from pystencils.datahandling import create_data_handling
from pystencils.timeloop import TimeLoop


def test_timeloop():
    dh = create_data_handling(domain_size=(2, 2), periodicity=True)

    pre = dh.add_array('pre_run_field', values_per_cell=1)
    dh.fill("pre_run_field", 0.0, ghost_layers=True)
    f = dh.add_array('field', values_per_cell=1)
    dh.fill("field", 0.0, ghost_layers=True)
    post = dh.add_array('post_run_field', values_per_cell=1)
    dh.fill("post_run_field", 0.0, ghost_layers=True)
    single_step = dh.add_array('single_step_field', values_per_cell=1)
    dh.fill("single_step_field", 0.0, ghost_layers=True)

    pre_assignments = Assignment(pre.center, pre.center + 1)
    pre_kernel = create_kernel(pre_assignments).compile()
    assignments = Assignment(f.center, f.center + 1)
    kernel = create_kernel(assignments).compile()
    post_assignments = Assignment(post.center, post.center + 1)
    post_kernel = create_kernel(post_assignments).compile()
    single_step_assignments = Assignment(single_step.center, single_step.center + 1)
    single_step_kernel = create_kernel(single_step_assignments).compile()
    fixed_steps = 2
    timeloop = TimeLoop(steps=fixed_steps)
    assert timeloop.fixed_steps == fixed_steps

    def pre_run():
        dh.run_kernel(pre_kernel)

    def post_run():
        dh.run_kernel(post_kernel)

    def single_step_run():
        dh.run_kernel(single_step_kernel)

    timeloop.add_pre_run_function(pre_run)
    timeloop.add_post_run_function(post_run)
    timeloop.add_single_step_function(single_step_run)
    timeloop.add_call(kernel, {'field': dh.cpu_arrays["field"]})

    # the timeloop is initialised with 2 steps. This means a single time step consists of two steps.
    # Therefore, we have 2 main iterations and one single step iteration in this configuration
    timeloop.run(time_steps=5)
    assert np.all(dh.cpu_arrays["pre_run_field"] == 1.0)
    assert np.all(dh.cpu_arrays["field"] == 2.0)
    assert np.all(dh.cpu_arrays["single_step_field"] == 1.0)
    assert np.all(dh.cpu_arrays["post_run_field"] == 1.0)

    seconds = 2
    start = time.perf_counter()
    timeloop.run_time_span(seconds=seconds)
    end = time.perf_counter()

Markus Holzer's avatar
Markus Holzer committed
    # This test case fails often due to time measurements. It is not a good idea to assert here
    # np.testing.assert_almost_equal(seconds, end - start, decimal=2)
    print("timeloop: ", seconds, "  own meassurement: ", end - start)