Newer
Older
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from pystencils.session import *"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Tutorial 01: Getting Started\n",
"\n",
"\n",
"## Overview\n",
"\n",
"*pystencils* is a package that can speed up computations on *numpy* arrays. All computations are carried out fully parallel on CPUs (single node with OpenMP, multiple nodes with MPI) or on GPUs.\n",
"It is suited for applications that run the same operation on *numpy* arrays multiple times. It can be used to accelerate computations on images or voxel fields. Its main application, however, are numerical simulations using finite differences, finite volumes, or lattice Boltzmann methods. \n",
"There already exist a variety of packages to speed up numeric Python code. One could use pure numpy or solutions that compile your code, like *Cython* and *numba*. See [this page](demo_benchmark.ipynb) for a comparison of these tools.\n",
"\n",
"As the name suggests, *pystencils* was developed for **stencil codes**, i.e. operations that update array elements using only a local neighborhood. \n",
"It generates C code, compiles it behind the scenes, and lets you call the compiled C function as if it was a native Python function. \n",
"But lets not dive too deep into the concepts of *pystencils* here, they are covered in detail in the following tutorials. Let's instead look at a simple example, that computes the average neighbor values of a *numpy* array. Therefor we first create two rather large arrays for input and output:"
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"input_arr = np.random.rand(1024, 1024)\n",
"output_arr = np.zeros_like(input_arr)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We first implement a version of this algorithm using pure numpy and benchmark it."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def numpy_kernel():\n",
" output_arr[1:-1, 1:-1] = input_arr[2:, 1:-1] + input_arr[:-2, 1:-1] + \\\n",
" input_arr[1:-1, 2:] + input_arr[1:-1, :-2]"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"3.84 ms ± 36.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
]
}
],
"source": [
"%%timeit \n",
"numpy_kernel()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now lets see how to run the same algorithm with *pystencils*."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdkAAAAoCAYAAACy/oAKAAAACXBIWXMAAA7EAAAOxAGVKw4bAAANAUlEQVR4Ae2di3HdNhaGJY0L0Ho78HagdTpwOnA2FSTuwBlXkHE68KaC2OnA7mAdd+B0kFgdeP8PAigQF3w/gEsdzOASjwPg8P8BHgIgeS+/fv16Ya4+BC4vL19Lq7+8Zrc6fhRXn4gr75kON/LfyP8g/9THdbi4kNwvLhD9JPWR8yHUF4lZcCYCCb6L+ErqQiPjaiYvuWIJvou4ov6kPpKML1DIuASrRdgnddFanbhjZM3XhYE6yx/yN4EXhd/Lv4nirwn7dGSfR/EvQc6nPVH+5yATyf0Ry4Ww5J6EcA1H6dPgUIM+OR2k4yp8gb28cbXhNWktrugHNfElXWycaBx2jM/NrmljcDcDu+GAzhE+lOYHrsTuDT9Eyl+T5sPBqHJBfhdkFXYz3BD38sg4oxzSKSPv6ghpXrYlF+dNCatu9H0/toxkX8ozc3fHuJzSnss/i9NqCks3DKNUWs6X6pnNlcp2YhjrtkZYbWX5VfqD4Qoc5Xbny7BfhrvnLdt/u8aGMO8cW8ob7PNmZKOLYxfIe6aLtGt5etIX+TfyLQOjeDC2Qa6VH+vqy1OXKxPnpWHJYHgX3fGpPJ0XnfGf0zZyccn9KN8Yd4XptM2NA2XkqG+Rbrm210iTXoGHRXz5c5zFlcoOYrjSuQ7y68/j0FxFfXI3voSrYX9/LZiL+yCG6TgZM7aG+rwZ2cqMrB/AzEhZIqYz4U9mhUrDGEn8fgaVhpXPhf+kbEaOztcYujR/alx1of9YI8tsoHWjoHhrECmOIWsZ3qk6bSmP/vKL+FL52Vyp7CCGa56/P98sv8o7PFdgKVeEr4eO/RLcwxjowzDIhKNkB8eWZHr7/JUEzFWCgDbyn8izjMsG/rfyl1LtJ/ln5CVqfqu4exAqSXdRyUM8vlMmKvdK4d+i+C5BryPn9XfS4K3iGC7nhANxsEkx8BJlDugjv5gvj8MsrnzZQQz3QujoXIFjrXwdHfsluM/p/2PH1hDuV3MatzKbIcCSLXuTjROB7klhHf9sEu8C/9HhQ5LWRD3xxLkTO3HqQMyEg+OhiTHGOMivdQxGEyMaO4zu4zhBYW4CGsOb5JWKrsLXQq6mYLgXToflCgAr5+uw2C/EfU7fnzK2OnE3IzsH+u3KYFyYoTZOxpBNd2azjVMa5DPzgdg+919lpvVdqzx7nM5o+7r66tgjL53J0ibnFzv0bZ1LnFkovCZfS7kag+FeMB2dK3Csla+jY78U9zljYMzY6sT90ZwWrcxmCLxQzc9l+GiA2R2G5k/dwf1OQuQwsqR/itJOgsp/obpe45UZZrQ8BEU7wbm6QqTQkVkr5xtcOoslPeARZGo4rsbXClyNwXAvzA7NFSBWzNehsV8B9zljYMzY6sTdjOwcyDcqow7E3dDJhyTS5iTHMvG/0vRcXLKtWXBORml0kJaTYWZpdkzZ79TGSflWZd0Rzhd3fXdofomnNxDcTeaMb1No78DafM3kagqGDUQb83t4rgByT74a4oYDh8d+Ju7DyJ1KTBlbnbj3GlkNxBu1yyzoqfxbnVw8AzpVyVLOEQE6R2rkuIBgyDv3fNc4UbVxqz5GR84Zz49JG8iETp9kPZjoCVcTMWyA2phf4+oO6dX4aogbDhj2dw9SnlzThqFrS0wcW5249+7JqpFP8uyDoTCvKMxyupB+lmdZ0lx9CGC41uYm28HpA/Lv5eN89oe/C7AojweyfqeDhzR/rGFZO1Fp92gXV70YduC+RPmYv1w9xtUdKlvwZdjnelw7rQv3IJXFsGOc9I6tUKGOnX3+KhLKBtUwy4a4WbMaf9Hk5XRO3FxlCARjJp6yHW+Kur6T0ilZ/cCgvpPnwa3gaINVkdCnmDGzPM5NWNg75tWlxuiGgjr+W372jV5UjwuqPfa+Y91SkeriXVyNwPAE9zknJ7zgtI/fUO2D5wog1uSrBPZq8+zGSB/uIzA8GScjxtZgn79UJUEoe5RiXDB5F3DUHmBaicozKJ+qPAPvbJ3Og6/q8LDRrJuNmk9c54axyT1gtYnaao/+lD7M1duWyvBd0tX6EDqoQW7+BvfAexXbOXMJV3Nwn3N6xtU9anvztSb29BedydmNEdCvCffBmaz0ZdaxxLAsLQ9mNTj2o9N9whr0WqyDNzS77Lf7gftpitK+DDdrD97N5WoO7nPANq7aqO3Jl2F/j31NuLeMrEhyy0E6snT3Uv5GauOzy3SRHLI/enn3V2wKv5GnHGvVNz5+Vstz0ts56c6NAn81d+uTjniAc2brW7vHwnH01oF0YgmHJWTejzN3h8AcribhPgdo46oTtc35Muyz2NeBuy5e7B2gIYaE73E2H/dWGCPZ+o5sJN/7916+TpYbFOz+vq6Xa9ockp2ar/YX/QWUynOR51wHP7I/Vbfa5HWOYXnI9Yka9JNO3Jitjr0/15c1nOMcHYyr/mvKHEy3LLM1X6p/9XFy7mMEPmvA/RFa+LsgPhH3kxSLZxmEecK4NYOTvJudKj1e9uOdyrisou4LPbEMaS2nuvgwffM+puJ0ln/K/8UxzmsVjCIDZZidcxc/eclb5ZjF/yr/g8q3MIiaP0xQ5zhpn3SPE5dOZ7VnugcmtGFc7YX0Ou1szZeNkzxPNeDujKzU4+EmZmxvE1WZ3eYuvLz/hXFm5ksZ/iElZ8S6ylOc8s6wu8hdnOXKxrAqn6fbqDv3tKkrpvzeMoAsGZauebAnvQkITZ8cJQ8mGHyM66+Kn8iMTPgZHUbKmtjKCHge6Yepo78/Vv73aYbi9JXOPpeRt6QVEDCuVgBxRhWG+wzQphTRxQTxk79tUhoXITJbf0OGvC/DhSssJyPX+ks1xYfKM0ts/b2a4oN/KxTaD8cxZbwuk/8qTeUwsui02XJ2dB5gaH4iBgG/qUdhzdL47OVi42peX53KE/LG1Tys4z5aAnfP3YO/pj3SXQzGEJ8u67q7fwHVmqFKPiwVMztzeUrDGLHJjDEKs8WnSsMgN+VpS/Fb0uVeyf/sQvohTwfqdrPkkK4j8tkZ8dgytIlu+Ei/qIl8ULK/qAz6M+Ne7fWRXGtqa/ZUOVefpW2LgPG1Lb5r1m5crYnmtLoM+4uLqwiy/0VhgiyjOcMrQ8OyLQYQh8FhKbVxAtLtm+kYDCx5fCmqMdzUoXiog3weSGryo7xghJHBYXQfu9DpT6hvTJnfVDy3bHhaa5TidWS5uXXOkYgFDQFDwBAwBAyBLAJXMiIYKGZrwWAxq2Sfk+XcYDS/iQwoRq/1l2OSZybbPLykMO5a3pVXPmFmkc6oKt60hWDiqD91lO9zY8qgS0vvvgrjPOnN6yPcJJgzBAwBQ8AQMARGI/DIS/KQBw/3YCxxGF0MEkvApLH3GhwfLWBmSxwD7YypDFH6cA8zP2aA7t1L5cdPiWJkgwFXsOWYtVJvcF2z2JDPcUyZoGtcbkqYB6jYn26Wv6cUNllDwBAwBAyBh4eAM7IyHBig3NOUJ2mSxTjGBjOLmpfrmznGhpQ6gtG9Tiok7mbASTrRKWWY7Y4x2Jlm3N5yOlPPylmiIWAIGAKGgCEQELgKgZ2PGLyWMfWGHqOZM4Qfc/pNLEO9wSjnqrO0HgQ0i3df7eoRObcsViQO+RUp46q+rnimnBxijJTGvpSRxdjl9mX5Pm0zexY47IM2f3umOE8I21+llbmG8MBb7gaojDYLW+UGzd+kLaypyuLGVX20nB0nBxojRbEPe7K7dknIk7F0r+3EFzqFeWWG7yCHJ3l55acxulKS2S+vBvGUsNsDHlFGos7xCg5gm5uIAJyoyGEM7MTTPytx46o+uoyTcpzUgH0RI+shZ9baGMtAA0YzhNOj8tib/YeAaz3p21cmqoO/29vln2aiNs8+KKxZcbiVt6X2ytk0ruojyDgpx0kt2JdaLuYjFRjTyUZPwGFgux6EyjLqy9hfpWXRGUx8Ia4OuXc5eObnJ2Bc1ceZcVKOkyqwL2ZkPe51/BVRuU5Qdcu6OeH1K7s5qZqlO+WMq/pIMk7KcVIT9kWNrGZIPL32twBhSXKUmzGrwlDY6zej0L0XEifsf7MnbsvE97BUGTKu6qPFOCnHSW3Yl9yTdSzoIp5+xGJVdlR/5x7vqg0dr7JXws5uTs6DV+OqPp6Mk3KcVIV90ZlsOQ6s5T4EdCfIvjffejZXOQLGVX0EGSflOKkRezOy5fpDlS2rk7JMzLeqJz1cVuXJHFwp46o+go2TcpzUiv2lLqblULGWq0NAHZVZ7PfyfJUrduxt8yrPW/nPtgwfQ1MmbFyVwb2vVeOkD51t82rF3ozstrwfpnZ14C86mQ8yrvHHQQ5zfkc6EeOqPjaNk3KclMbelovLcX+OLbOUbO48EDCu6uPJOCnHSTHszciWI/0sWtZdIO8y81eHdNJnCr+Td39feBYn8ICUNK7qI9s4KcdJLdjbcnG5PmAtGwKGgCFgCBwcgf8DpsUufKsWZaMAAAAASUVORK5CYII=\n",
"$\\displaystyle {{dst}_{(0,0)}} \\leftarrow \\frac{{{src}_{(-1,0)}}}{4} + \\frac{{{src}_{(0,-1)}}}{4} + \\frac{{{src}_{(0,1)}}}{4} + \\frac{{{src}_{(1,0)}}}{4}$"
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
],
"text/plain": [
" src_W src_S src_N src_E\n",
"dst_C := ───── + ───── + ───── + ─────\n",
" 4 4 4 4 "
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"src, dst = ps.fields(src=input_arr, dst=output_arr)\n",
"\n",
"symbolic_description = ps.Assignment(dst[0,0], \n",
" (src[1, 0] + src[-1, 0] + src[0, 1] + src[0, -1]) / 4)\n",
"symbolic_description"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAANoAAADTCAYAAADnEg0TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAClpJREFUeJzt3W9sVWcdwPHv0z+X0tLC4I7hUGZchluiiTFxMdmcm7qRS7Y5/JNg3AvFxAjTSDRzJMZk0akkRoPGzMRIfLGgkTmXbHEdL/ybEaPGF1OjYwwWUNDJZUBLKbDePr5o6coKtL1rf4eefj9v6D33nPVHeb65596de5tyzkiaXS1FDyDNB4YmBWgregDNjNRbvw24DVgKpIvsloGjwK9zrfq7qNkEyedoc1/qrX8R+PQ0D3s416rfnY15NJGhzXGpt94N/AFon+ahZ4B351r11MxPpdfyOdrcdwPTjwxgAXD9DM+iizC0uW9BQcdqGgytjPqPtXDfratYt+o6Xni2UvQ4MrRy6uga5ms/O8SNd/QXPYpGGFoZtVdg6VWNosfQqwxNCmBoUgBDkwJ4CVZZbVm3kgPPdXB4f4U19x7nzg19RY80nxlaWW19/FDRI+hVnjpKAQxNCuCpYxmtvXL1Re976sjzgZNolKGV0bmYdu3oZvuDy9m5d1/BE817njqW1XADdj/ZzbIVQ0WPIkMrr107erjprn7Sxd5srUiGVkaNIXjmiW5uX+9FxZcJQyujpx/p4ea7+2lpLXoSjTK0Mjq4p8KvH+3h/ruu478HF7Bt8/KiR5rvfNWxjDZurTM40MnL/72ahz6R+Mw3PIUsmI9oZXXy+BXk3MKXfzzytQplaGXUGGrl7OnOsdtnBrtoDPlvXSB/+HPfxM8LPHli8YRtA30Tt8HwLMyjCzC0ue/YebdyhoG+K8g5jduWOHniCiZ+hufLsz+ewNDK4B/Af8ZunT7VyXBj4uv6w402zgwuHLfl37lW3Tv74wkMbc7LtWoG7gNG3n/W3n6Wjs6TdHSeHNvp3O229ldGt/wL+Gz0rPOZHwleIqm3vhpYxrlfcvHFtbshNfj2L28Z3WUYOOojWTxDK7GUUgaGcs7NfGS4ZpCnjlIAQ5MCGJoUwNCkAIYmBTA0KYChSQEMTQpgaFIAQ5MCGJoUwNCkAIYmBTA0KYChSQEMTQpgaFIAQ5MCGJoUwNCkAIYmBTA0KYChSQEMTQpgaFIAQ5MCGJoUwNCkAIYmBTA0KYChSQEMTQpgaFIAQ5MCGJoUwNCkAIYmBTA0KYChSQEMTQpgaFIAQ5MCGJoUwNCkAIYmBTA0KYChSQEMTQpgaFIAQ5MCGJoUwNCkAIYmBTA0KYChSQEMTQrQFvnNUm+9A3gL0H6J3V4BXsy16mDMVNLkUm+9E3gzl167Z4H9uVY9M+H4nPMsjfaab9Rb/zzwSWDhFHYfBH4CfCvXqjEDllBKKQNDOedLLQ5dQuqtJ2ALsB7omMIhp4DtuVb9/viNIaeOqbdeAzYxtcgY3e9TwD2zNpQ0NR8FPsHUIgPoBD6XeusfGL8x6jna7U0ed8eMTiFNX7Nr97zjokK7ssnjqjM6hTR9za7B846LCi1N2NJ/rIX7bl3FulXX8cKzlYsc56uiKtrENdjE2i1uIXd0DfO1nx3ixjv6C5tBakYTa7e40NorsPSqRmHfX2pWE2vXUzMpgKFJAQxNChB6CdYEW9at5MBzHRzeX2HNvce5c0PfVA5LKS3OOZ+Y7fE0f0x7TU1z7RYb2tbHD01115RSG1ADvgC8N6V0T875iVmbTfNGSunDwM6U0m+B7wBP55wv/WLHNNYuzIFTx5TSm1JKDwEvATuAWxm5nmxxkXOpVBYDp4H3AT8FXkopfTWltHKmvkGxj2iXMjjQyZ6/vAfYO7plwbh7E7AhpbQqfrC5J6X05aJnuMytGfd19+ifXwLu56+7T7L6HYN0dL2ud5MUF9raK1df9L6njjzPwIklDPQtAjITryzpYOSR7dbZGq9E2oCHih5iDhh+ze0FwDADfVVO9vWfF9pka/cCigvt3EC7dnSz/cHl7Ny777z7l73hMDfceIiRU8Z7GPlBdI7eewrYlHN+JG7guce3yUxNSmkD8D2ga3TTANAKPMYN73oTi5etOO+AydbuBRT7HG24Abuf7GbZiqEJ96UES5cfyzl/DFgBPAC8yMgPYcGE/aXXp8LI2toH3A9clXO+lyXV46SJl+pecu1eQLGh7drRw0139V/wLzJOzvlEzvn7wLXA+4HtwDMBE2p++B3wI+A24Lqc8w9yzpf+X01TXLvnFBdaYwieeaKb29dP+cLMPOKPOeeNOecXZ3M8zR85530550055z/nqXzkQBNrt7jQnn6kh5vv7qeltbARpKY0sXaLC+3gngq/ebSHBz74Rl462M62zcsLm0WajibWbnGvOm7cWh/7etMt17B52/8Km0WajibW7uVxZcjDvz9Q9AhSU6a4di+P0KSSMzQpQFRoZ4OPk2bKjKzdqND+3uRxf5vRKaTpa3btnndcVGg7gaPTPOY4Ix8LLhVpBzClNySPcwR4bPyGyM/eXwl8BHgbk/+Si38Aj+Va9WDEbGXlRcUzI/XWr2Fk7V7P5L/k4u/Az3Otevi8/0ZUaIpnaJcPX3WUAhiaFMDQpACGJgUwNCmAoUkBDE0KYGhSAEOTAhiaFMDQpACGJgUwNCmAoUkBDE0KYGhSAEOTAhiaFMDQpACGJgUwNCmAoUkBDE0KYGhSAEOTAhiaFMDQpACGJgUwNCmAoUkBDE0KYGhSAEOTAhiaFMDQpACGJgUwNCmAoUkBDE0KYGhSAEOTAhiaFMDQpACGJgUwNCmAoUkBDE0KYGhSAEOTAhiaFMDQpACGJgUwNCmAoUkBDE0KYGhSAEOTAqScc9Ez6HVKvfUE3Am8n5yXMtDXBcCfdn0IgBvX/AKArp4BUjoK/Ar4Za5V/ccP0lb0AJoRXwE+DsDgQBfHj6wkpczqd47ce6K+jpwTra3/ZuGiU8Ba4O3ANwuad97x1HGOS731JcD6sQ2VjtOklMk5jW3LOZFSptJxZtyhH0+99e64Sec3Q5v73gq0jt1qa2tQ6Tg1Ya/KwgFa2xrjtrQDq2d9OgGGVgaVCVsWLTlGSsNjt1PKdC85NqVjNSsMrYxeOXOar29o4XPvg0P7ILU0WLBwsOix5jNDK6OFi4bZ8sOjvPO2kUezRYuPkdLkx2nWGFoZtVfg6muPj93u6ukrcBrhy/vl1dbWIKUh2ipnX/MiiApgaGXW2naKniteLnoMeeoohfARray2rFvJgec6OLy/wpp7j3PnBp+nFcjQymrr44eKHkGv8tRRCmBoUgBPHcto7ZUXv4bxqSPPB06iUYZWRudi2rWjm+0PLmfn3n0FTzTveepYVsMN2P1kN8tWDBU9igytvHbt6OGmu/q9xvHyYGhl1BiCZ57o5vb1/UWPohGGVkZPP9LDzXf309I6+b4KYWhldHBPhd882sMDH3wjLx1sZ9vm5UWPNN/5qmMZbdxaH/t60y3XsHnb/wqcRviIVn4P//5A0SPI0KQQhjb3vZ4PQR2efBfNBEOb++qT7zIrx2oaDG2Oy7Xqc8DBJg7dn2tVL80KYmjlsBHYM439/wlsmqVZdAH+kosSSb31q4GlwMWuuxoGjuVa9XDcVAJDk0J46igFMDQpwP8BiJCQfoddbocAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 216x216 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
"output_type": "display_data"
}
],
"source": [
"plt.figure(figsize=(3,3))\n",
"ps.visualize_stencil_expression(symbolic_description.rhs)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Here we first have created a symbolic notation of the stencil itself. This representation is built on top of *sympy* and is explained in detail in the next section. \n",
"This description is then compiled and loaded as a Python function."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"kernel = ps.create_kernel(symbolic_description).compile()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This whole process might seem overly complicated. We have already spent more lines of code than we needed for the *numpy* implementation and don't have anything running yet! However, this multi-stage process of formulating the algorithm symbolically, and just in the end actually running it, is what makes *pystencils* faster and more flexible than other approaches.\n",
"\n",
"Now finally lets benchmark the *pystencils* kernel."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"def pystencils_kernel():\n",
" kernel(src=input_arr, dst=output_arr)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"639 µs ± 35 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"pystencils_kernel()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This benchmark shows that *pystencils* is a lot faster than pure *numpy*, especially for large arrays. \n",
"If you are interested in performance details and comparison to other packages like Cython, have a look at [this page](demo_benchmark.ipynb).\n",
"\n"
]
},
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Short *sympy* introduction\n",
"\n",
"In this tutorial we continue with a short *sympy* introduction, since the symbolic kernel definition is built on top of this package. If you already know *sympy* you can skip this section. \n",
"You can also read the full [sympy documentation here](http://docs.sympy.org/latest/index.html)."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"import sympy as sp\n",
"sp.init_printing() # enable nice LaTeX output"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"*sympy* is a package for symbolic calculation. So first we need some symbols:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"sympy.core.symbol.Symbol"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x = sp.Symbol(\"x\")\n",
"y = sp.Symbol(\"y\")\n",
"type(x)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The usual mathematical operations are defined for symbols:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAKoAAAAZCAYAAAChKLVZAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAFdklEQVR4Ae2bgVHcMBBFOYYCSFJBoAMgHUAHUEKgA5hUwEAHJB2EdABUEKADSAWE64D8p0ge2ZaNvfb57sCaMbJW0mr3a7Urycfk5eVlxZImk8mZ+q3r2dDzqOdEvKbKxzQiYEagyq4mFkP1zC7UFwNdUflS2YbK22YJx47vHoE6u1o1orNf6Heq8pYGwruOaUTAikClXVkNFUFiowwhP6ZZhR37vW8EYhvK7GrNgolC/Gah35Yv3xboY3FEoDECdXbVxaPGAnCwanWYYpug5zBmMr73g4Bw3X8j27DMrkyHqRhOAeJO/1oNRzG97l19uC24VJ+9unZjXRkBYXcn6oWen8JvqjLRDOyvVP6l3CXROeDiPNyB15OXJpP8ObvqZKhihkfcFhiNjRSk1A+wD5YVRHSYVxJ2zxqbhR6nc2F5EhPUjjY3oi/dTUzKrsyhX8x2BcRmMFLKesJeNcYs9+6FuB3KSDUeYfA4J8QcCz3Ig4c814P3xDiZg5yRirYiGgeR66669yAv4jROGi9pV6bDlJhhkLjmUxTxUuBVD/x7XQaoY8ivQ6i+7jFlmBVdTkX/owfDXvhUZ1cmQ5XGN3rcPjPW3q/imJR7lyDu6kHtlnLflFNmCQrMhzB/1LOr9+slELnSrjJDlTIYXjiFf9E7ng/Dwnt+0vMkZd3KVP5BZUvC+1YC1kYGy+Bt+0TycB33EPSHj+rAhr32Z9EJs4MljR3miTlDNr4S3lcIAN5EukrcK/r1Qo4whJ/drqQgDFD4jHdfBogHPce+zPtdqLfm4nGl5zDVX/SZyCC+LA6nR2rcOpr6OUyUs296jtvCU49I/zFrmquPWR7GUALD9TCe3lkwVOA13fzFuejMpXnu1Ncsr/r2NqfBo34TU/YzIbFKAeC7J7D/7CNcw/Ov51nMhpKhOG6y7D3mb1+JRyrqzz57cC8lI8zt71UmtCMHV1bFDzEiObwxmHmk3ubUXU/hnqXwNGiiMquW1ZkDJdRbc/HlaoVrqdIEd5VB/Tnc4fmKiUn6qKdoaLTjYIIRllIsj5f7VG2zQ4loeDHuKTNazKRveWLexXeNhZHiObkByOmpOrZueNRJsV9cnoW84tmfXUmBVLhgEkzhMsUv0MQTQ02GqNAm5GrXiwziYw5dyIK8XpY43DL5VG4FeZvm6mOWR325xC+FcdFYpMhTwlY0J2tT+Yrt1N8sb4KXeU5XJUgu+RUIreT1cg1tBcL+q2FoxjK0lRyPey/Qs4ijMsY7Fa3qANN2jKbtUxGDvgHT1G8tqqJJ0zF7add1Tp2higmX4kFZB0Y8Cao7juq7CE5YArhSGlCG0tivENhX58KpynPZn2pcPpumvjQxZ8XFJJJLyB8vMk+efdbnnK6KGUoSUsJqze1LVe8ULXgUq5Z4oBLQA8vQVvackXpZwcrt49sy69j+TOOzH82SyuxNWfzJvbbo4D2L6Ci21anvOV3TUIQLPsfxayauXFD40APCPSF72HD6p9glMbk5oD2zIWVoKz/3yT88NvQNJ+vBJ1/zwAk/GCteEifCdqruLndH9V/1DJ16ndNOP0qxaC6guZPdA3RL/7Z9NB6HAf5NJnk6N/Bjoe2IXykyNOHVtzx1Y2ostnMcvsLiqmuerBtS3qQAnjgPQyVUtf7FVZ0SdXV+sogKrfdp6suWKPtfMM+LmwsWmsmjdpGnTs9UncbiNuBJspoX6ZDypnQItMENlYGlPFuAIwE4iFcNyrbNJSfen69Tbuvj5eZ3n+aJbyuDtb03sKX8mV9K53kZKiFp4X84rcnm0MQ9JInwWfdN3TValD9+US28M2iK11wMFeEEJAcBLqj7Oqg11fnNtxO2bK+uFz1itZmIf3yMaza5icDpAAAAAElFTkSuQmCC\n",
"$\\displaystyle x^{2} \\left(x + y + 5\\right) + x^{2}$"
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
],
"text/plain": [
" 2 2\n",
"x ⋅(x + y + 5) + x "
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"expr = x**2 * ( y + x + 5) + x**2\n",
"expr"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can do all sorts of operations on these expressions: expand them, factor them, substitute variables:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAIYAAAAYCAYAAAA/FYWiAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAEqElEQVRoBeWagVUUMRCGOZ4FoFYgdIBagdIBagVoB/isgIcdoBUodqBWINABdIBcB/h9YbMvt+zevd3N3cXHvDdkk1xm/kwmmckuk9vb240hNJlMjhl3De/AT+ADZE0pi6cK+xZAt+Er+OP/gj23cTttoWP0ZcCdwO/juKr+M9ZLLsGqQ29HjDyfwuex/pDKebbYpHMoeVJEOufhdawUXu438B1R32XneHo8NOq0xaMhlmBXfWiMe079V6Ot5GoMIWKM4S9tKxl7bmzpvGtbDHKMFBk7zVj9Fn6Vtpf6jFOnJ50wdyusZ6ViXhauebbYHKMUpzhk/G/4CCUXY2Stcaw5x4NNPht2r20xYUEbff2rOIjJqAndXv/R6xsBbg2xBe5maFwfqAWaK8zeBqWn8Lccm/KeLXSMsQw445Qetj9W1qrGg/U9fLIqfWP1gNWQHZL8KEv8tsX60BIZ92zRO5TgWVvwDRxjM3Jr8n1Gb0LWPmxYWgmhyxvUDoYMJ4V1uG0+2fAgf+wcvVafgTlN8t2Qf8eA7LJF7+QTYFOECSZmsOLS0Na/WymZKgcwhBy5WBVWHeRNqbirxQvOnGJkLUaF7nm26O0YFTCN+AHBxjrjnJ77XKehLJ1Mlj2W3YE1FY79I0CnYPQtbU7qtEXtGCyyxjLWSC9hwbjgHrEu/jXAPlOak3gDKeYW0hP7Y+cwjxJ5Xm0v47wdQ582MdY/o31VG8HT4gLdrsU72A0ptlMwpKFFfH3WsdsWCEZ+2EHHPld1HeQSPqzqPo9OcqL8Zolsj/Sgq9m3qM44DZEVe5RH6YLcpBiomwvR1C9pZ8ygOTLO+blIOmP9GUL9kOtSJ/w8Z7NFdIR4bUvravYqRxEMVH9f6GuURb9H/iCjVdiyYgeLJ0IwNuW9rJ+2n/KiOTX7lQn3dn7GRMdA5Kwz0ie+G39jH5TNFuE9hscPgqdKlqg7eZ1kVHKjjJSQK3B3YZOcvDeathh6BY7OxDA39lQezxrdl3chhAqaNlfAF2J1m+2R6F/GHNWpHWbe2qIrXDPp26PvF/V864jAcEqkJYoE0tu7Uxl9ntE1aDe16ciFHTk6sHYIu1FdkDHeh9023fPaGDN4joxtDeW06xjimQkxEUfVN2gdNxk8Q3idk5dmkpq7prL/ZsbuKXWBkeuTlLrOMqVt1Ym3+gxxXXTvpB1ri+AYCPHli8e5FI76dPL0HSb9d78q5O8SsbsQTYMbWtexYY7Q64vFuEbR+n7V1lEDppy22ESYjuCdPjgE5UxeQb8GUnm6c2haPy0Z+4xTVLq0Uci/Vjn7apP+QOenqBc8OolftQ9sy22LCTJV8BX+A0tfYGOXiY5XJHMQ25ZGTMr4662nNaHrUlwZZynYW2Rrj2AXcM44TRe+tH3oHBsywq2DNjepG7b+qt2Cd9Q6Zvm6moIf8pzDaEP09hkDRq+GL3AKj+/e9D/MMZ1UKY7hqeXJ5E5YO7GIhlZPsOAE1MXn1TVcC4cArGQUM8dFc3i06Aer6C/FIZK5ejPz2I6ko/juYnDiWeAc49xayyJOjFZka2xkd5tkxmu7uYX/t7HqK+oaLbCx8Q9xlEVrw3lWOQAAAABJRU5ErkJggg==\n",
"$\\displaystyle x^{3} + x^{2} y + 6 x^{2}$"
],
"text/plain": [
" 3 2 2\n",
"x + x ⋅y + 6⋅x "
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"expr.expand()"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAHoAAAAZCAYAAAD+OToQAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAE6klEQVRoBe2ai3EUORBAvS4C8HERHM7AHBlABvZdBEAGpojABRkAEVxBBvgiADsDTASAMzDvaaUtjXZm16OZXW/BdJWsX3er1a1utcY7u7m52auB2Wz2CroDygPKFeUFvK6pJ9hBDcxqDB2N/AZaDbxH/z3VA/oPd3CPk0hoYL9SC8cF3Rn9Iwyud0+wgxqoNbRbyY2aQnY+toPb/X1FulezdUL0YUF3FPufi/GpuyMaGOLR+RZMzHolY4Z5yrOcydQeRwPo9bi8RquSsVwcGIbsGy9/no+vakNjtv4emier8Ka5bg1EvX+LGH9S/4c+LxMF8ybIOl9ImPdoVBcY6ZFm3714QHNBMUvvRTfhh6ewTqL+Hid90H7jWOpbAwEvjVWHbk7MY5gdwih4sn1KuqtdqBXA8XB8hm5+0lqxxhtkPcPY6Xgch3EaQR49Vf2dZ5KYBH/P+jqQCfJ52ntVMgaxBjVknyl4XECDn8T2quoFk1PIXqWhjjl0rXMFB8tRMGqXPn32fqW8rjI0hP9Twj1LvYB4ihb9soGg4fkF3la8uVz/F+jrJNe31Z/2QOdXHpCFoelouJQFP6ItUw2j93rZf4PwNbVh4Q/rCtD785DTYNFHhgbhhjqZPD4nv6T9uxxz6sa78i8V6tgWQG++ZG1t8i/FZEzZTGy79Or4SUiGaGjkVyCnvgb/Qjl1LLYbl33C7VPD5yPlWRsN4xuRAb4errCPtnVXjUEXdEKtgn/kuPKkMNQvoYSmSh7o1I/G8HA1dEhfWx23ySIu5SJ59Es6xvMEnhJP7Ns44P07RriVZyNpiPyttiVDtmR3M3rsp4hh7lHu33uxy4u6GQ+fOcKgyS6Jm3K8Q+Zz5sroor4PwjsahIMcgb6e53HtuuSd7g3w/QHRCXyXFDRUBuhNDvW8EvSE+5TSUOJdIUtrApnLE+U+AzdcXRIypnf5Tl2MOZ5gbHnkG9dU5saXScb1Wp9YT5hr6JY5w/xFCNVMNmom3ERVuCt55X14aujF+y+fK9tjyQCfqlCZ5FHeKIvOEPREX+WpI72robt1fWiq5YHWEL10hTKmoZWnEdKVBQiy7tvKIZ4AhxonI8cZ0A5hZB39hmVYt3w5r8dforQ8JGp8s9/LEnnDfdfz+uuCtqgVolkwNIr1o4IhTgjhL98Ec6fZ/Byr7q+CuPASbFGGpbXXDKjYUoF3dT+bRx202MLfAXjw2pxT+a/3IdKwfm0JBqZu3MvMB8TiRINWBZ7IpR8nbFmGvoI3jBxlVVchj+nLbAh+dL4P8DBxDYA8Oug/lKfzkaW/6vt8xh8R31FShmlGZ8z3wjeV9w4qszyHe0NUkt/Gy2RiYzKwpnei39Vbk6Z1m4iKzPWj7EE/8GwcgnW8nB8qT+QR/pFE+5qiI5ootl4jrKcNnw7+7xVMegELm1CYHfZWUq+FIvIYis3XhZ/Z7d/IvxSZcryu9tjydK3jOGvpQCZvh3dhaL3hIYv7Nt84xM0alTz9vQBar7TFb+EiL18OS8+Y2zIeIs9t10h4rKXnz79oooBez4Mx8Fnc+23n/02JjEafxZMlyj36s3MMnZY8kDV5c7Dv1j0aAVJI2fkfHuARJl2+QwXvZvOL1rswYOzQH2TXmZ4jb7gi78TQ6gNBTCL8eDJKoifPCeYaQLdej34OXeRBPwGnY432F5GebwAAAABJRU5ErkJggg==\n",
"$\\displaystyle x^{2} \\left(x + y + 6\\right)$"
],
"text/plain": [
" 2 \n",
"x ⋅(x + y + 6)"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"expr.factor()"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAANoAAAAZCAYAAABXYTDBAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAGi0lEQVR4Ae2bjXHVOBSF8zIUwEIH0AGwFSx0EJYKCB2EoQImdAB0AHRAqGCTdEC2grDpIHs+ja7jH8nPT5btZ2zNaKzfq6Mj3asrvWRze3t7kBI2m82p+t1XfKR4pfhWsm70XcPKwGIZiOnFJkXRvLCP6ouCHSj/VZ9Hyj9dLMPrxBfPQJteHCayc1Tr9175JxqI020NKwNLZSCqF6mKBpFlpTKXsVy2VLLXeS+bgbIOFHpxL4UTuYiPa/2e+Px5rXzNrgwshoE2vehzopUJ5GFkp8cQ3EzF47KQNR1noC9f6n+EjPgI+1UzN7wR9u70Qlp40CdqAITxMNJZjtrzWvl9lz5LbpuLL8mxR6vOazUE78JxoYiRvY98BTyij4pH5fGU3wu8ZUxd08Je0YukV0cJcUFWB7KeavA3vqjTR/0g+qX6uVfLTp0W3CgXX5KDgfsh3id9HRaO/4QDLOXwQbjelgv2BW8ZU5e0cDf0Itl1lLDnGvSxKRl5RburRfF4EOdjKZnGw2U6iQLa84qcfIlzLudnffnIwCkG9oPiN0WUi31UUTKVceruC17gdAriJqgXSY8hEoZCcTS+h3SPgFPtpU+3fSD0RVuDta7CQG6++CnmX0U2+lThKqRYETD7gDcCrVrcphdJiibxPxQ5+vGhi+AtUJGvJwTEXcbVbnUZ6+QE8kPwxRpJ7pXic6XPAsPuVdHM8Eb1olA0EY/i2Cvgn0pjSVEMTq+HiteatLOC+v6hfErg9Isu7i4YUgZP6eMxcXrjxhDgiYcc3B4XfJt3ylz7IviiTTFXtYFH3AqMzANF5LxSm7b70lB8gQvvo8Cn9KhBfNhegwd+LuJB7TICYjK8fm0Na7peaHLMjcmekvZ5BP9UPPF50hdWn/qVjO+Kx6H+Kh8Eg+SyWd08QuO2lakfhoaLe/EapjQKQxl/cqaPy8OPy5s85Zmr8cfcGq+sKvtp7UNfLyM7X5LL+iavp/omc+o5gxv34ujz8AyZnLKNF1GVT4IXjIpZ9MJONKwxvrAFLAyT/+QLuH/lcPeQ+cvLrH/GwlAfty2Pa8x9oji9lGcOBBaBQJtvalPnB4/gQhYRa8wJ9gzrqHY3SlvgSbstDMUXa2D428YfpE4cVO7ocOd5go/6H0OAYSq82fake96vbwDlsThYlgohlPUJkstJwLN+w2Xpi0H9ce9wzeqBDcVGrysC7VCi4AMOeFQP3k9qg6FpBLXhdLOfKsrK6NqqHivtnq2Vdqee8swdfkPKqeK7oD6D8GW4Na/N3WjNlNpl5bQ5wl2JxkLJOLl4gays1VR4NW7FMCqfrheaVOioZoMkuVsheVYmmWycoHtgbeyrdlkwSE6Sm6N+KFErBi+bNsE5+f7OZVQaxWXjopj0Ibb+0K/6QfiSXDc343rXr/oncco4CngADbdVZXAT5FLlk+Etc+PxJenFoTpXgrcelDVOnUrDtEwnF2BgDF2Rm1UNuTImw9q0uWG4Rc7d1KLxZ2r8wM9Jwil5rLrQKWzyh+LrgQYw7DbWWN/YfI3D8wCQKfE6OH33pFM0CeFHXZuoI0Kb4dImrLqTUr0Vp3xZXEhrhBExNMYOFWj+NyqHg2ehevB6jmjXcLFVjxUmYMFRNNyiIqgv91/cTaeERUU1MRRfjAnuKcIXzT300sq+u/S813FNgjfnnjyUMCbIZjBLU9k0qneTjBBQJ2Rbno3bIHlkDNswluu5vzX++Fl4cXPMEP2l9N8qM8Wy/p+V4H5mnsE7tTFjZm3IW72Vlb9D8cUatI1bxpA7fSoeKo9AymOEMMDB+7LKR8crTFn1AheGxWZT/KNIwNK6S6m+3Ce4w9nrI9nk4MFzL6m4YyofDINkc5/g6T3pLyFK2H5JDg8aDxWZQ+F6qQ3GiFfGG0UC8/mqNm4zq55Fw4DRnzrawUHltzblK8H3y86X5LKur4XPjEVl3G0Z9e/LaZkv0nAb/e+PKfBqTNYpm170+qPibQsSqtcE2Gwvyhs11C5XWd9NkQtHqpzcfPkNxGNExdjtgm9MTueGN8bjFIrGabnzX/zHJrCt3C8UpzKnyOyC8GflS/Jwe6/FR9IJD4Fjcjo3vLENNrqi+YXi94g3Y51qscnPpVybLQtfXkEm/zeZrrzPDW/bvA7bKges49JbuRAPONbvIDoXXzx6xR4c9pGnueGNcjjJiQYaWSsuwfzQm+WhJTrD36SiL1/qjwt6NhcvYm54t22z/wEpCTBaXuAzLwAAAABJRU5ErkJggg==\n",
"$\\displaystyle x^{2} \\left(x + \\cos{\\left(x \\right)} + 5\\right) + x^{2}$"
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
],
"text/plain": [
" 2 2\n",
"x ⋅(x + cos(x) + 5) + x "
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"expr.subs(y, sp.cos(x))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can also built equations and solve them"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAANAAAAAZCAYAAABAQ6AIAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAGKUlEQVR4Ae2cj3HUOBSHswwFwF0FQAeB6yB0ACUAHcBQQSZ0AHQAdEBSwRE6SKjgIB3kvs+RPbbX9tqyrfUmqxkhS5aefnp/9J7kDavr6+uDmLRarU4Y94D8mHxJfgetK8p92nMgmgO7plerGAMKi/zIWA3ngPpXisfUn0Zzbj/wznNgF/XqXqTUXtTGHVM/hAF6o33acyCWAzunV7EGJIPKxpKHbuW2WCbux91tDpR1aPF6dT9GVoRqT2rjDkP9R619X91zoDcHdlGvxnigMmO8UBh0iWC4R35dJrJ/noYD8PXFLQmnB+vVNBzsTyXqEqFMHkFlt3HsHm/K7V3PjPH27itjnnf1279b5wC8O6f1I/kL/LuirveX99+pf6PMEu1e7LipZRc9oXlnCvAP1qttLG6UB2KRepAHCKm38YRFnlEOHbMN/ixxTs8IGtAf+O83CA3qqmw81E2vyBrRzqURejXrWsGlZ5fvOoAsRZ2BHAmRI4onufGE+m/qPzPKLf/QT6P7Qb8kOyPzebPjFfuHFkhJmyfAI99OXRP5X/K3Jl7Spnc6Jb8ds/YJ8AKxf2K+KL3qP8OwnuDRWD6T5bs8L4yH54MoA4KoYYMu9jgwWFp6lJc+bEjveL8P3TYwqeP1JQYhD/ukYzr9Ii9i89gEeKRebSIf9d6NiIGZXoPPzb9y1R5lQBAxBNMSKyFCmIzm5gQALfiAfkm8TzOKu9OqPOD5JfmIZ73W0lOUXm1zUYUBwWQNIr8V+4dndzkVXm/zN/k/hJDtZJQPqcckrbdVkEMwxEw+dEwJj9f2F/n6pcM7eeP54xHt7lLJEnPnclJmYvNXIW2hs/x2B23lO+9mSyUeOsdcejUb/k2EMwMKi3yPELLQIAjoO4MVzAfqFzyrJGNDAUO3iteinqWEGPIp+5QZT8B2RGdxl9fvZuAFSlLjcU5ydgNHmRvyBRifg6XJSJTdVi5sUsqUuTxSKKchybP4KN7kHug9sxov58ldzR32U2hwkinCLmn+DjTrRSoM9Xkb6whErB7STe7g9fW7GTQprP1nSwi8cn6kbogmDm/m6h+4xSG/NbptpGQyhQ99z4WT8iH7DuROAYBiJ6Wu9/GsUhHW2Jmh+wcaL6G7pnhjMTC+bQdSef4i1w3A5Xgg1zjWUhlPwH1M38ID0eYVst9ZirYykanxlGnXn5lL4zGs81a0sk7eGYKf076qjyvX58ALzSR6VV7HnM+sRx7L64fw88ZeeNBQKpkOKofXn5X2sXVoakAeaDfSnQoDdAy1otci3oBFZchwU1cp5dFh3ta3ZEw0HsYaRmoMFf7R5uYhnjXe0pZhrY/pW2d8NN76HAFjtCzq9FLXwa8ByedCF/IQjrabFHYsK2teInQZU/QKJ2bGMBS/Huonwio8NHWN6oq2toP70Dn69nfeiocJA/WypqbfIrZ535sRif6dW6bQb4tAulbYGoF0DSq/ywyIyd1lToOSKCR3uEI5eP+Wpk81JbLb0KTwFehaSohhbe4NDZ6F6kq7lfMPOLw8aDr0KrO6kefLEn/Z+PP22cuUMoUvWzkD3WORMt/QIDMcysq5h/eZACYwHgWmUa790V1iDOIYkirGE7DKq+ycOITQBH1PmN8YvEjUDSvclBrPcrTL7zmiCci2p4XLtB1495vc0xe97vOk2/dHiP46Wk+jIF4HQfmdQ2+U38ZZHZOyq/EGAikxNEzf2eTO9jnwxo75TVdypUQO3rjlRqRXcXMzLO76FvWM96/IqdOSZTqIF8EW3KRyJ3NGm+s7H/1r7EFI6MzEfpfwm0VlZx9Kp29/5jM8ney3cIGZz8C/5kn7YJoaT9eczOWO6aVDbvRd3RvfpcTbCGDhjdswIEOOpwi1KZafnF1BifSig88BjDW0Lf6vh0DLm8S2j5Yb8Y/Bs5F4rQNzebAufkFSe92rmhJvL0AL65TcgFw/QjGUe4NSJ/FCsTwHp97yBJxZCBtw+3c3jd9+YueZY1xQ/DOwRnnKOTDdRprbMiBDi8X/QR1KaMx7GARvGNT1m7PQbRlFMPbFb1LL4FY8iq0YkHARsAdgP/xNdUERz4VbNhLeGib7WWLRHv42sP1//R3DyYnQa4YAAAAASUVORK5CYII=\n",
"$\\displaystyle x^{2} \\left(x + y + 5\\right) + x^{2} = 1$"
],
"text/plain": [
" 2 2 \n",
"x ⋅(x + y + 5) + x = 1"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eq = sp.Eq(expr, 1)\n",
"eq"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAH8AAAAyCAYAAAB1ewShAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAE60lEQVR4Ae2di1EbMRCGbYYCHNKB6YCQCkI6gKQCoAMYKmBIB4QKMqQDoAOgg9AB4A6c/zskj7g522efdEa+3RlFOj1X+0ur1QOn3+v1XuUGciH9Go/Hp2GEhfOVQL/fvxD3J6UejPqKAPxDuccg8UXgj4JvC2YsAYHP5N4KurCj8NWmi3gS2E9BogXXSAJuIk8msxsMvY016uPad0Wg7cu9evCadtjP/Kb1WPlEEnBAX6l6NPNQrmyfLd2ygb+06Nop6FT2Aa1pIBzJ24/Vsqn9WJLMsB4DP0PQYrFs4MeSZIb1GPgZghaLZQM/liQzrMfAzxC0WCwb+LEkmWE9Bn6GoMVi2cCPJcl26ol2uge7dsLXDmiNWtHJ3qUq4FZuz1V0p7h7hR90AvjbxS3sdRp8CZB77mcntc/y/0iY4dX2wgJNUUA8Haeot5NqX6AP5B4k0BsJlocrvxRGpXKB0hnqJPhC91ruXqDfBkgPFX4JvmsHNZC4ai2/lKldflUZO6f2BRLrJm47FLoGwvfwuwvhLs583iaOBHbnXy4ln/maaayl3ENDX+UQPiqWd2QYWc9uzVWwFWLWP4ov2v8ph8GHFrguLQOKWm9KCr4D/kxCLV4C65tBcCN3CeD6/qfwSA6DKzk5fnw7u54vIuBF7lRxf32GdfdTq/0zCfA8ECIzjFnv96ZsYYpXKkGeNoI7Atnz4NvD+LsqDRCftpb+zJnvBHG3YM8PJVi/Vz5XmJntCVV76+Pkh9a2z/POj8DDpD7aVX18V633bP3QTLtylXypLOcCLBtlYmnbUjrLSJl4GT13gKvsuFwwxrfaLjpcVddM8BGWCn2pKlgnzpUPsyK4YgkII2eFm/JQUTfAhwOynAXNVEnipZJ3Ace7uqHSl16+VHYqSJXMRIhMrfYnLEpAzHqocla9JbXyL1ppKsBKq9IKrTDWdiNJwWdGyKESoUJdaoT7JQEj6yRIf8uV/l9sEE74PF++RTQcW8BVD07PTy1f/biQu5S7cX65X1PrSQa+GAFsTtIK0OW/O0RROrMPYc9SwcoSl9zgw6LHGC1IvCCwH3L82Vo2JL6xQdg5Hcsh3y252jbaZsKecuuEkIdikqNPjJ4jhbmhwrjqieGyxU10clK7BwjO8cLgYyB+U/xEKyVnIk4D2BrI0xNa7UH9wv6Yu3wlA1+NI9Sylbu0QeR7F8sXf5XGW6z6W6yHgeuB9lo0jJvKSjLwp7a4ngkrsRM0gN/dT0i03qhG684lA3+uiOZncFpufsb0ObABOKX0GmBmixszUy0xGwlgw4hZDtBqL60GfjbwTmdUwHMyORDwHJfXJlP7tUXVTkYBOVBLtW9BlX9P+bc98O6bX1aptXPhZ1m46GDrZW6FMhAOAH/hcVCYQcDN5wlxLsyjzQInfWPgsW1my+cdt6ZogalYKp1yrzbzJYUPRHVuQf22DrY50GHAcJg2IQFfy+Az8Cci+xCBhW5BBfKnJlybwddEepHLVsxY1nPUeBIy8JOItXmlMtz8gU2yAyQDvzlO0WoQ4K3eghr40aBrVpHborV6C2oGXzPMYpZu/RbUwI8JX4O6nLHX6i2oqf0GgOVe1MDPHcEG/Bv4DYSXe1G/5vPUKjwStJ9czx3ZgH9hyxHwVhA1JOx/b5/EkOw/WwilkXlY4HPXX/4T8tF/Lpu0ZsotEIsAAAAASUVORK5CYII=\n",
"$\\displaystyle \\left[ - x - 6 + \\frac{1}{x^{2}}\\right]$"
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
],
"text/plain": [
"⎡ 1 ⎤\n",
"⎢-x - 6 + ──⎥\n",
"⎢ 2⎥\n",
"⎣ x ⎦"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sp.solve(sp.Eq(expr, 1), y)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A *sympy* expression is represented by an abstract syntax tree (AST), which can be inspected and modified."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAKoAAAAZCAYAAAChKLVZAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAFdklEQVR4Ae2bgVHcMBBFOYYCSFJBoAMgHUAHUEKgA5hUwEAHJB2EdABUEKADSAWE64D8p0ge2ZaNvfb57sCaMbJW0mr3a7Urycfk5eVlxZImk8mZ+q3r2dDzqOdEvKbKxzQiYEagyq4mFkP1zC7UFwNdUflS2YbK22YJx47vHoE6u1o1orNf6Heq8pYGwruOaUTAikClXVkNFUFiowwhP6ZZhR37vW8EYhvK7GrNgolC/Gah35Yv3xboY3FEoDECdXbVxaPGAnCwanWYYpug5zBmMr73g4Bw3X8j27DMrkyHqRhOAeJO/1oNRzG97l19uC24VJ+9unZjXRkBYXcn6oWen8JvqjLRDOyvVP6l3CXROeDiPNyB15OXJpP8ObvqZKhihkfcFhiNjRSk1A+wD5YVRHSYVxJ2zxqbhR6nc2F5EhPUjjY3oi/dTUzKrsyhX8x2BcRmMFLKesJeNcYs9+6FuB3KSDUeYfA4J8QcCz3Ig4c814P3xDiZg5yRirYiGgeR66669yAv4jROGi9pV6bDlJhhkLjmUxTxUuBVD/x7XQaoY8ivQ6i+7jFlmBVdTkX/owfDXvhUZ1cmQ5XGN3rcPjPW3q/imJR7lyDu6kHtlnLflFNmCQrMhzB/1LOr9+slELnSrjJDlTIYXjiFf9E7ng/Dwnt+0vMkZd3KVP5BZUvC+1YC1kYGy+Bt+0TycB33EPSHj+rAhr32Z9EJs4MljR3miTlDNr4S3lcIAN5EukrcK/r1Qo4whJ/drqQgDFD4jHdfBogHPce+zPtdqLfm4nGl5zDVX/SZyCC+LA6nR2rcOpr6OUyUs296jtvCU49I/zFrmquPWR7GUALD9TCe3lkwVOA13fzFuejMpXnu1Ncsr/r2NqfBo34TU/YzIbFKAeC7J7D/7CNcw/Ov51nMhpKhOG6y7D3mb1+JRyrqzz57cC8lI8zt71UmtCMHV1bFDzEiObwxmHmk3ubUXU/hnqXwNGiiMquW1ZkDJdRbc/HlaoVrqdIEd5VB/Tnc4fmKiUn6qKdoaLTjYIIRllIsj5f7VG2zQ4loeDHuKTNazKRveWLexXeNhZHiObkByOmpOrZueNRJsV9cnoW84tmfXUmBVLhgEkzhMsUv0MQTQ02GqNAm5GrXiwziYw5dyIK8XpY43DL5VG4FeZvm6mOWR325xC+FcdFYpMhTwlY0J2tT+Yrt1N8sb4KXeU5XJUgu+RUIreT1cg1tBcL+q2FoxjK0lRyPey/Qs4ijMsY7Fa3qANN2jKbtUxGDvgHT1G8tqqJJ0zF7add1Tp2higmX4kFZB0Y8Cao7juq7CE5YArhSGlCG0tivENhX58KpynPZn2pcPpumvjQxZ8XFJJJLyB8vMk+efdbnnK6KGUoSUsJqze1LVe8ULXgUq5Z4oBLQA8vQVvackXpZwcrt49sy69j+TOOzH82SyuxNWfzJvbbo4D2L6Ci21anvOV3TUIQLPsfxayauXFD40APCPSF72HD6p9glMbk5oD2zIWVoKz/3yT88NvQNJ+vBJ1/zwAk/GCteEifCdqruLndH9V/1DJ16ndNOP0qxaC6guZPdA3RL/7Z9NB6HAf5NJnk6N/Bjoe2IXykyNOHVtzx1Y2ostnMcvsLiqmuerBtS3qQAnjgPQyVUtf7FVZ0SdXV+sogKrfdp6suWKPtfMM+LmwsWmsmjdpGnTs9UncbiNuBJspoX6ZDypnQItMENlYGlPFuAIwE4iFcNyrbNJSfen69Tbuvj5eZ3n+aJbyuDtb03sKX8mV9K53kZKiFp4X84rcnm0MQ9JInwWfdN3TValD9+US28M2iK11wMFeEEJAcBLqj7Oqg11fnNtxO2bK+uFz1itZmIf3yMaza5icDpAAAAAElFTkSuQmCC\n",
"$\\displaystyle x^{2} \\left(x + y + 5\\right) + x^{2}$"
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
],
"text/plain": [
" 2 2\n",
"x ⋅(x + y + 5) + x "
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"expr"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n",
"<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n",
" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n",
"<!-- Generated by graphviz version 2.40.1 (20161225.0304)\n",
" -->\n",
"<!-- Title: %3 Pages: 1 -->\n",
"<svg width=\"422pt\" height=\"260pt\"\n",
" viewBox=\"0.00 0.00 422.00 260.00\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n",
"<g id=\"graph0\" class=\"graph\" transform=\"scale(1 1) rotate(0) translate(4 256)\">\n",
"<title>%3</title>\n",
"<polygon fill=\"#ffffff\" stroke=\"transparent\" points=\"-4,4 -4,-256 418,-256 418,4 -4,4\"/>\n",
"<!-- Add(Pow(Symbol(x), Integer(2)), Mul(Pow(Symbol(x), Integer(2)), Add(Integer(5), Symbol(x), Symbol(y))))_() -->\n",
"<g id=\"node1\" class=\"node\">\n",
"<title>Add(Pow(Symbol(x), Integer(2)), Mul(Pow(Symbol(x), Integer(2)), Add(Integer(5), Symbol(x), Symbol(y))))_()</title>\n",
"<ellipse fill=\"none\" stroke=\"#000000\" cx=\"135\" cy=\"-234\" rx=\"27\" ry=\"18\"/>\n",
"<text text-anchor=\"middle\" x=\"135\" y=\"-230.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">Add</text>\n",
"</g>\n",
"<!-- Pow(Symbol(x), Integer(2))_(0,) -->\n",
"<g id=\"node2\" class=\"node\">\n",
"<title>Pow(Symbol(x), Integer(2))_(0,)</title>\n",
"<ellipse fill=\"none\" stroke=\"#000000\" cx=\"99\" cy=\"-162\" rx=\"27\" ry=\"18\"/>\n",
"<text text-anchor=\"middle\" x=\"99\" y=\"-158.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">Pow</text>\n",
"</g>\n",
"<!-- Add(Pow(Symbol(x), Integer(2)), Mul(Pow(Symbol(x), Integer(2)), Add(Integer(5), Symbol(x), Symbol(y))))_()->Pow(Symbol(x), Integer(2))_(0,) -->\n",
"<g id=\"edge1\" class=\"edge\">\n",
"<title>Add(Pow(Symbol(x), Integer(2)), Mul(Pow(Symbol(x), Integer(2)), Add(Integer(5), Symbol(x), Symbol(y))))_()->Pow(Symbol(x), Integer(2))_(0,)</title>\n",
"<path fill=\"none\" stroke=\"#000000\" d=\"M126.2854,-216.5708C122.0403,-208.0807 116.8464,-197.6929 112.1337,-188.2674\"/>\n",
"<polygon fill=\"#000000\" stroke=\"#000000\" points=\"115.237,-186.6477 107.6343,-179.2687 108.976,-189.7782 115.237,-186.6477\"/>\n",
"</g>\n",
"<!-- Mul(Pow(Symbol(x), Integer(2)), Add(Integer(5), Symbol(x), Symbol(y)))_(1,) -->\n",
"<g id=\"node5\" class=\"node\">\n",
"<title>Mul(Pow(Symbol(x), Integer(2)), Add(Integer(5), Symbol(x), Symbol(y)))_(1,)</title>\n",
"<ellipse fill=\"none\" stroke=\"#000000\" cx=\"171\" cy=\"-162\" rx=\"27\" ry=\"18\"/>\n",
"<text text-anchor=\"middle\" x=\"171\" y=\"-158.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">Mul</text>\n",
"</g>\n",
"<!-- Add(Pow(Symbol(x), Integer(2)), Mul(Pow(Symbol(x), Integer(2)), Add(Integer(5), Symbol(x), Symbol(y))))_()->Mul(Pow(Symbol(x), Integer(2)), Add(Integer(5), Symbol(x), Symbol(y)))_(1,) -->\n",
"<g id=\"edge2\" class=\"edge\">\n",
"<title>Add(Pow(Symbol(x), Integer(2)), Mul(Pow(Symbol(x), Integer(2)), Add(Integer(5), Symbol(x), Symbol(y))))_()->Mul(Pow(Symbol(x), Integer(2)), Add(Integer(5), Symbol(x), Symbol(y)))_(1,)</title>\n",
"<path fill=\"none\" stroke=\"#000000\" d=\"M143.7146,-216.5708C147.9597,-208.0807 153.1536,-197.6929 157.8663,-188.2674\"/>\n",
"<polygon fill=\"#000000\" stroke=\"#000000\" points=\"161.024,-189.7782 162.3657,-179.2687 154.763,-186.6477 161.024,-189.7782\"/>\n",
"</g>\n",
"<!-- Symbol(x)_(0, 0) -->\n",
"<g id=\"node3\" class=\"node\">\n",
"<title>Symbol(x)_(0, 0)</title>\n",
"<ellipse fill=\"none\" stroke=\"#000000\" cx=\"27\" cy=\"-90\" rx=\"27\" ry=\"18\"/>\n",
"<text text-anchor=\"middle\" x=\"27\" y=\"-86.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">x</text>\n",
"</g>\n",
"<!-- Pow(Symbol(x), Integer(2))_(0,)->Symbol(x)_(0, 0) -->\n",
"<g id=\"edge3\" class=\"edge\">\n",
"<title>Pow(Symbol(x), Integer(2))_(0,)->Symbol(x)_(0, 0)</title>\n",
"<path fill=\"none\" stroke=\"#000000\" d=\"M83.7307,-146.7307C73.803,-136.803 60.6847,-123.6847 49.5637,-112.5637\"/>\n",
"<polygon fill=\"#000000\" stroke=\"#000000\" points=\"51.7933,-109.8436 42.2473,-105.2473 46.8436,-114.7933 51.7933,-109.8436\"/>\n",
"</g>\n",
"<!-- Integer(2)_(0, 1) -->\n",
"<g id=\"node4\" class=\"node\">\n",
"<title>Integer(2)_(0, 1)</title>\n",
"<ellipse fill=\"none\" stroke=\"#000000\" cx=\"99\" cy=\"-90\" rx=\"27\" ry=\"18\"/>\n",
"<text text-anchor=\"middle\" x=\"99\" y=\"-86.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">2</text>\n",
"</g>\n",
"<!-- Pow(Symbol(x), Integer(2))_(0,)->Integer(2)_(0, 1) -->\n",
"<g id=\"edge4\" class=\"edge\">\n",
"<title>Pow(Symbol(x), Integer(2))_(0,)->Integer(2)_(0, 1)</title>\n",
"<path fill=\"none\" stroke=\"#000000\" d=\"M99,-143.8314C99,-136.131 99,-126.9743 99,-118.4166\"/>\n",
"<polygon fill=\"#000000\" stroke=\"#000000\" points=\"102.5001,-118.4132 99,-108.4133 95.5001,-118.4133 102.5001,-118.4132\"/>\n",
"</g>\n",
"<!-- Pow(Symbol(x), Integer(2))_(1, 0) -->\n",
"<g id=\"node6\" class=\"node\">\n",
"<title>Pow(Symbol(x), Integer(2))_(1, 0)</title>\n",
"<ellipse fill=\"none\" stroke=\"#000000\" cx=\"171\" cy=\"-90\" rx=\"27\" ry=\"18\"/>\n",
"<text text-anchor=\"middle\" x=\"171\" y=\"-86.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">Pow</text>\n",
"</g>\n",
"<!-- Mul(Pow(Symbol(x), Integer(2)), Add(Integer(5), Symbol(x), Symbol(y)))_(1,)->Pow(Symbol(x), Integer(2))_(1, 0) -->\n",
"<g id=\"edge5\" class=\"edge\">\n",
"<title>Mul(Pow(Symbol(x), Integer(2)), Add(Integer(5), Symbol(x), Symbol(y)))_(1,)->Pow(Symbol(x), Integer(2))_(1, 0)</title>\n",
"<path fill=\"none\" stroke=\"#000000\" d=\"M171,-143.8314C171,-136.131 171,-126.9743 171,-118.4166\"/>\n",
"<polygon fill=\"#000000\" stroke=\"#000000\" points=\"174.5001,-118.4132 171,-108.4133 167.5001,-118.4133 174.5001,-118.4132\"/>\n",
"</g>\n",
"<!-- Add(Integer(5), Symbol(x), Symbol(y))_(1, 1) -->\n",
"<g id=\"node9\" class=\"node\">\n",
"<title>Add(Integer(5), Symbol(x), Symbol(y))_(1, 1)</title>\n",
"<ellipse fill=\"none\" stroke=\"#000000\" cx=\"279\" cy=\"-90\" rx=\"27\" ry=\"18\"/>\n",
"<text text-anchor=\"middle\" x=\"279\" y=\"-86.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">Add</text>\n",
"</g>\n",
"<!-- Mul(Pow(Symbol(x), Integer(2)), Add(Integer(5), Symbol(x), Symbol(y)))_(1,)->Add(Integer(5), Symbol(x), Symbol(y))_(1, 1) -->\n",
"<g id=\"edge6\" class=\"edge\">\n",
"<title>Mul(Pow(Symbol(x), Integer(2)), Add(Integer(5), Symbol(x), Symbol(y)))_(1,)->Add(Integer(5), Symbol(x), Symbol(y))_(1, 1)</title>\n",
"<path fill=\"none\" stroke=\"#000000\" d=\"M190.3082,-149.1278C207.3555,-137.763 232.4019,-121.0654 251.5344,-108.3104\"/>\n",
"<polygon fill=\"#000000\" stroke=\"#000000\" points=\"253.4799,-111.2199 259.8589,-102.7607 249.5969,-105.3956 253.4799,-111.2199\"/>\n",
"</g>\n",
"<!-- Symbol(x)_(1, 0, 0) -->\n",
"<g id=\"node7\" class=\"node\">\n",
"<title>Symbol(x)_(1, 0, 0)</title>\n",
"<ellipse fill=\"none\" stroke=\"#000000\" cx=\"99\" cy=\"-18\" rx=\"27\" ry=\"18\"/>\n",
"<text text-anchor=\"middle\" x=\"99\" y=\"-14.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">x</text>\n",
"</g>\n",
"<!-- Pow(Symbol(x), Integer(2))_(1, 0)->Symbol(x)_(1, 0, 0) -->\n",
"<g id=\"edge7\" class=\"edge\">\n",
"<title>Pow(Symbol(x), Integer(2))_(1, 0)->Symbol(x)_(1, 0, 0)</title>\n",
"<path fill=\"none\" stroke=\"#000000\" d=\"M155.7307,-74.7307C145.803,-64.803 132.6847,-51.6847 121.5637,-40.5637\"/>\n",
"<polygon fill=\"#000000\" stroke=\"#000000\" points=\"123.7933,-37.8436 114.2473,-33.2473 118.8436,-42.7933 123.7933,-37.8436\"/>\n",
"</g>\n",
"<!-- Integer(2)_(1, 0, 1) -->\n",
"<g id=\"node8\" class=\"node\">\n",
"<title>Integer(2)_(1, 0, 1)</title>\n",
"<ellipse fill=\"none\" stroke=\"#000000\" cx=\"171\" cy=\"-18\" rx=\"27\" ry=\"18\"/>\n",
"<text text-anchor=\"middle\" x=\"171\" y=\"-14.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">2</text>\n",
"</g>\n",
"<!-- Pow(Symbol(x), Integer(2))_(1, 0)->Integer(2)_(1, 0, 1) -->\n",
"<g id=\"edge8\" class=\"edge\">\n",
"<title>Pow(Symbol(x), Integer(2))_(1, 0)->Integer(2)_(1, 0, 1)</title>\n",
"<path fill=\"none\" stroke=\"#000000\" d=\"M171,-71.8314C171,-64.131 171,-54.9743 171,-46.4166\"/>\n",
"<polygon fill=\"#000000\" stroke=\"#000000\" points=\"174.5001,-46.4132 171,-36.4133 167.5001,-46.4133 174.5001,-46.4132\"/>\n",
"</g>\n",
"<!-- Integer(5)_(1, 1, 0) -->\n",
"<g id=\"node10\" class=\"node\">\n",
"<title>Integer(5)_(1, 1, 0)</title>\n",
"<ellipse fill=\"none\" stroke=\"#000000\" cx=\"243\" cy=\"-18\" rx=\"27\" ry=\"18\"/>\n",
"<text text-anchor=\"middle\" x=\"243\" y=\"-14.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">5</text>\n",
"</g>\n",
"<!-- Add(Integer(5), Symbol(x), Symbol(y))_(1, 1)->Integer(5)_(1, 1, 0) -->\n",
"<g id=\"edge9\" class=\"edge\">\n",
"<title>Add(Integer(5), Symbol(x), Symbol(y))_(1, 1)->Integer(5)_(1, 1, 0)</title>\n",
"<path fill=\"none\" stroke=\"#000000\" d=\"M270.2854,-72.5708C266.0403,-64.0807 260.8464,-53.6929 256.1337,-44.2674\"/>\n",
"<polygon fill=\"#000000\" stroke=\"#000000\" points=\"259.237,-42.6477 251.6343,-35.2687 252.976,-45.7782 259.237,-42.6477\"/>\n",
"</g>\n",
"<!-- Symbol(x)_(1, 1, 1) -->\n",
"<g id=\"node11\" class=\"node\">\n",
"<title>Symbol(x)_(1, 1, 1)</title>\n",
"<ellipse fill=\"none\" stroke=\"#000000\" cx=\"315\" cy=\"-18\" rx=\"27\" ry=\"18\"/>\n",
"<text text-anchor=\"middle\" x=\"315\" y=\"-14.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">x</text>\n",
"</g>\n",
"<!-- Add(Integer(5), Symbol(x), Symbol(y))_(1, 1)->Symbol(x)_(1, 1, 1) -->\n",
"<g id=\"edge10\" class=\"edge\">\n",
"<title>Add(Integer(5), Symbol(x), Symbol(y))_(1, 1)->Symbol(x)_(1, 1, 1)</title>\n",
"<path fill=\"none\" stroke=\"#000000\" d=\"M287.7146,-72.5708C291.9597,-64.0807 297.1536,-53.6929 301.8663,-44.2674\"/>\n",
"<polygon fill=\"#000000\" stroke=\"#000000\" points=\"305.024,-45.7782 306.3657,-35.2687 298.763,-42.6477 305.024,-45.7782\"/>\n",
"</g>\n",
"<!-- Symbol(y)_(1, 1, 2) -->\n",
"<g id=\"node12\" class=\"node\">\n",
"<title>Symbol(y)_(1, 1, 2)</title>\n",
"<ellipse fill=\"none\" stroke=\"#000000\" cx=\"387\" cy=\"-18\" rx=\"27\" ry=\"18\"/>\n",
"<text text-anchor=\"middle\" x=\"387\" y=\"-14.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">y</text>\n",
"</g>\n",
"<!-- Add(Integer(5), Symbol(x), Symbol(y))_(1, 1)->Symbol(y)_(1, 1, 2) -->\n",
"<g id=\"edge11\" class=\"edge\">\n",
"<title>Add(Integer(5), Symbol(x), Symbol(y))_(1, 1)->Symbol(y)_(1, 1, 2)</title>\n",
"<path fill=\"none\" stroke=\"#000000\" d=\"M298.3082,-77.1278C315.3555,-65.763 340.4019,-49.0654 359.5344,-36.3104\"/>\n",
"<polygon fill=\"#000000\" stroke=\"#000000\" points=\"361.4799,-39.2199 367.8589,-30.7607 357.5969,-33.3956 361.4799,-39.2199\"/>\n",
"</g>\n",
"</g>\n",
"</svg>\n"
],
"text/plain": [
"<graphviz.files.Source at 0x7fc7dc51b2e8>"
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ps.to_dot(expr, graph_style={'size': \"9.5,12.5\"} )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Programatically the children node type is acessible as ``expr.func`` and its children as ``expr.args``.\n",
"With these members a tree can be traversed and modified."
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"sympy.core.add.Add"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"expr.func"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAALAAAAAcCAYAAADBaTXLAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAG2klEQVR4Ae2bj3HVOBDG85gUELgKLnQQoIIjHYTr4KCDZKggEzrgqIAjHQAVHKQDchUE0kHu+ymSkfRk2ZZl+5G8nVFs/dv9tFqtVvLL6ubmZqc2rVarM/HcU9pXulQ6kZxrPRejTcS0mDLukOBVbQO2hvJWfDHcHeU/6LGv/JOl9LaJmJbSxV2T+yAekCb7QOl5XD4gfxS1PVUennjjpWgTMS2li19SruznOAU8MGCMV41ey1t+SjUeUOYbqwsd/LIBrKo19eVvCqZqg7sHjC5kn+zmAe0GuZ2dd8r/EZUNysr4H0cdWBTQl9vH/H83EdP8Wvi1JeJUZcCHSi/1/rcbTeOBVfFWhe9V6byTazP2yYFu8UNcNIhBmKSbfRQX8dhmK2lAuj1Cx13sZJsnanOitntNWxXyTmde9sjXSuKHoXCgq8ZzLK+hmNCJ0sexcu9rf+nuqxKL39iWnuzIOMsjXyfKu8N+1lbUjli4sSnTWAXVDU08Ad0I8sEu9V6CSX2YAG5Rsord1qf1I939UMI5+uks1pfqcRRf4/I4rzbG2bpyF0JgbB+VqpBcPLcYjyXkFQzJK7lYuIqMoUxKMKkPevmicZgrwaEyS9pLJttp8sRdwm9snwp40N0bpXMlQgDsgmdAKiN0Jc7Njt3OxSW4YLCrFywa6x978wA/jBVDxaOfOiF6x5BfKC1CIzCh6MNFQN8doZcpg20ZHleu/ylh8DnCVrGpc24h8JbXdgXodTR9FgcWRHDlUZF/CcDBmOzCJmyYzfuWDOwu9cFGpHe863O95xzqN437T8aOAfOFLDtJYohBsp1Cz5TwTHhuvO1vSlcSaFaNng+Vn5xmwMQWlVMiu01vvUyuEAnw8HCV+c3NCbJVx3wRz/+u8mvK5iLJdraDvsDG2eiiRT46Z7fO6Z6+e3a8JvZtPWXTUKkJuvUOGFbAsUDoYd47g2/a1kqSOTkmyeBMwJ1jEvdUGMSXhWN02ya7rVz9zDzpya76w28HTyUVpcfTVq4+xXjgKUKPze2W3llIVOBl13Srcuwra0+qx3HC4wAP/Egp54Ffq57YxBErCBDuMplYJNff9av5nAMTY/yeAT0Hhoz4sMp62H9tKR4snhNi+ZxXCxlWyslIgzOE8oQI4OAqLf7ohVR0joPK0bWtfLTSC970kxhjiGuEm1ad68BWZG4rYmBrHScsmAOTZHD980LjTE76WAzqz0EXTxkTk9fmVDgQJQ/DPh6L/VRtm8OQyvBYfFBqynzBtfH4vON3ycJ48bTcSAQLTXV4VzwwtpkktUFHzM8hHrgxzlRrMYrrUfraNUiq71Rlm4BpLAb1T+pQk8OWzb1z0tDadOrwqD/zwwS7HRKng1FAycVIRW088JRc93Ei/iWisyl2ucCA6deDWOCGHugvLrspuC1O/+2jiHTP6UonxNRnKzMDmxBDieLw0BfOoC0DjJqbposShiP6IDdFLDAo9fsYbLHLqF3/SwyY1eAK9BqSJoeLdVdvAPmKUN2xVx92nig3EyaU2LqwZ8JQosGUV1sk/hX4f2QrsfdlTNhRvMgoh8CPTebIzct3DJjA/2mqtSYJQWwDbiUFAbnqjbBotadYBWXqxxXIjRLXOoNIfSbBlACBt0opn61xLgwJWJ1FgfeyWMFb7UtrJ4KfDc4kn3i3IeWJfTHAZCyvcnTeGuqoDmrsblcZJsrcqSUMERfPJ0B+jcU1DEJfWlDG+NSnibVU14uQIx4ouk1ujs8kmBICmfBA+V6buTB4Inu/Elu/s/NFJ3fS7zKK3gL6NtQ8c+PgjBiviuERmuXuonGmfynlCCNnDkzwzoMTXfJeTiDW7upqlUkmB5bmjrAW31p8hI0bmll/yGN1UnQPnBq3+LEIs/eqqX6urDYexzf1lCxCVT7AZG2O8SgZHZn/ibMelSA/eTJW40mI1Tm3zCEDET62uyfCmLxiHMKrb1vJNOcNyeyKA9dYqm9w6re8zHWT+BV54DF41gB2FEgWV4tXwtp6A+ON6SE6IgaG3L3cbW6GvxbI1QyiikVIQYRHhE9sfbMQk0IqFHagfn7Yg0Fz91tkvGAYiQcWvcjaA1FAq/FaRvwG4tzpqPmvZDFgsO9VQcw7OUle8K8hkwssFGAV+0F6CQ6whewm7SasHNYwYqjrNwe3rTbkr7Bz5nglPQeH0Bie2hHW8YHJXAn6BszW9VkVyZN3zOg+5aU0PDDeYfCB9T7pqXSs0i+hGl+Du4zXfb1rQt3GgBEuRhyqDsVotpgPuVvaaqBLA9aJ8Cu2YCcMDBgm1oiJw4rjpi4w2/qtBoZqQHZJbL/2z8FrBjyU8bb9VgNLauB//cXFCFN3t9QAAAAASUVORK5CYII=\n",
"$\\displaystyle \\left( x^{2}, \\ x^{2} \\left(x + y + 5\\right)\\right)$"
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
],
"text/plain": [
"⎛ 2 2 ⎞\n",
"⎝x , x ⋅(x + y + 5)⎠"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"expr.args"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using *pystencils* \n",
"\n",
"\n",
"### Fields\n",
"\n",
"*pystencils* is a module to generate code for stencil operations. \n",
"One has to specify an update rule for each element of an array, with optional dependencies to neighbors.\n",
"This is done use pure *sympy* with one addition: **Fields**.\n",
"\n",
"Fields represent a multidimensional array, where some dimensions are considered *spatial*, and some as *index* dimensions. Spatial coordinates are given relative (i.e. one can specify \"the current cell\" and \"the left neighbor\") whereas index dimensions are used to index multiple values per cell."
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"my_field = ps.fields(\"f(3) : double[2D]\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Neighbors are labeled according to points on a compass where the first coordinate is west/east, second coordinate north/south and third coordinate top/bottom. "
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAACkAAAAeCAYAAACxHzfjAAAACXBIWXMAAA7EAAAOxAGVKw4bAAACvklEQVRYCe2Y7XETMRCGzxkX4EkJpgMDHTgdJJQQOvAMJaSEQAVM6CCUQOggLgHSgXkecfLodLpzdEDuDzuz0Wm1H69Wq1WS5nA4NFO4aZoNfD/FttZmSaAqWiwWgnvfGq2rjCcqL9zVFALsFrtb7F9Nsa+xOatRnkv3P8i/lfnBi0PNrQhyAz/C1t0N9bdnfHEaO+5PoHmCBXYNe6tnoWIm2yxegugC/uZIFr/OgpCgRZDIbS82+QgsjoojWQ4vQkPH/Zboxfojy2v4lnXr1e87ePcv0XaaOcGsvdfwO/gHHDJIRuMLg2gGAkDv7QaGz9CutDaHrHfcZHPd5qpUhzOksWl6IEERWg0Z+z6GKNnMmNqkNXx32l0J5OCliRFx0mvsOobvo86pEd2dfuKY6XshQ4cJ8rzGEBroLpfHuWvwOpm7a2+7/BjlYyN6XlA3Gu4D3/bkTkzm+gtxSpfmJ4vFS4NcQEfnMYgj5M6fC9KndpvZ62QVZX7DAXjnuEmxC/JQPX5g7TM8mdoYXk5bXEpPTI5HDFjnHvu6AxLhG61QGLrZG9aGNqDpc0iAkiBSEvR5KuDbhGxzkL7VRYDuKHPwp9M8k/rzFFPy1bs4I/gl7GWQTHf8DoLkhyCLT2WiU/OZZy2f68tsr8ykb/AKoGEXHOdH5kOUH9GQ3pg8bjTPmvO8lEIJLFkIINvxasS7BrnjEfXykheChAi0lDl/LUxJnf3yROZSAx2P1WVxAwDSxp53JcDWYZjzHeofHfvkl2S9VQvx9r0+ieKgDEv727GXqQtFEK4psKaPfZbvDWzvvUx9qwN7irJ/GvfiKoe3vYWScpRhoONOsLh2apxih82DfqtABoMJ/1oRIHx8Sk9tqI2jzbXf3u5a8pcC394aOidYvNUn7fBvfft31e9OI9JaxkF1Zmpi4N+yOtb+L70YupAa3+UnAAAAAElFTkSuQmCC\n",
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
],
"text/plain": [
"f_E__1"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"field_access = my_field[1, 0](1)\n",
"field_access"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The result of indexing a field is an instance of ``Field.Access``. This class is a subclass of a *sympy* Symbol and thus can be used whereever normal symbols can be used. It is just like a normal symbol with some additional information attached to it."
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"isinstance(field_access, sp.Symbol)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Building our first stencil kernel\n",
"\n",
"Lets start by building a simple filter kernel. We create a field representing an image, then define a edge detection filter on the third pixel component which is blue for an RGB image."
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"img_field = ps.fields(\"img(4): [2D]\")"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAywAAAAsCAYAAACHZjwAAAAACXBIWXMAAA7EAAAOxAGVKw4bAAARw0lEQVR4Ae1di7HVOBbkUS8AYCIAMoCZCGbIgE8EO2TAFBFMMRkAEWxBBjARPCAD2Ah2eBmw3bo6Xln+Stfyt1Xla1ufI6lPW9K5kuyLHz9+3JATAkJACAgBISAEhIAQEAJCQAgsicDFxcUr5H8Lxz0c33D8AVvl+kIGC6CQEwJCQAgIASEgBISAEBACQmAxBLyx8hq2CQ2VG7h/h9M93D+UwbKYWpSxEBACQkAICAEhIASEgBAQAkQABspXnB4FBssD3H/Gcf8mfuSEgBAQAkJACAgBISAEhIAQEAJLI8ClYOau/cW9S/PRWQgIASEgBISAEBACQkAICAEhsAQCmFm5H+XLGRa6T5phOQGhXyEgBISAEBACQkAICAEhIATWgwA34LtN970GC9aS/c5jPeVWSYSAEBACQkAICAEhIASEgBBYKwKwHW7h4Ib5bIf0NFY+YtblLwrpXBKGiC8Q/ow78xlRTggIASEgBISAEBACQkAICAEh0IcAbIdr2BGvcXzOsSOQjpMlt5D2ueXT+pYwRPwNEWgZ3WWmFllnISAEhIAQEAJCQAgIASEgBITAEAKwJzj58QtsiSdDcS3c2yB8U9gf9PP3/zQMFgTwYy3/wfErIn9hZDkhIASEgBAQAkJACAgBISAEhEAKArAr+FpiflvlzVA6xOUm+7c4/gzicpblSZvB4tacpVhDgVBdCgEhIASEgBAQAkJACAgBISAEOEPC1xTTaBlctYW43xGPEyc1B5vkomaweMvGfaAFge4rk7UUO7xBnbmph+AQUNbZvY0AZzkhkISAuJQE12EiixeHUXVSRcWLJLgOE1m82L+qj6hj1PnsyZDYYKGx8u0osyueNJymcsaZB/Qe7vWigf23GZPWUFyaFM7dCBMvdqPKSSsiXkwK526EiRe7UWVnRY6qY9Tbvlh/G2PsrL3x1WuNIYwzDBToNrl0or2vgMdRdbhm7oHHIgrSrRDoRUBc6oXnsIHixWFV31tx8aIXnsMGihf7V/0hdQwjhXvieWR/KqUyWCCEhsoXm23A9VEcDTVzZvWFfhamsxAYQiDkjbg0hNZxwsWL4+g6pabiRQpax4krXuxf10fV8Wuo9mWuesPvsDyFkHBXfq7MzaSDcXY/KixnmOg+nU76FQLjEBCXxuF0tFjixdE0Pq6+4sU4nI4WS7zYv8YPruOP0DA/KPkbcOB1krvJ2H4JFDeeJwtIys1HRn7vcHzISVs4DTfga9N9YZCnFr9SPolLUys6UZ54kQjYQaKLFwdRdGI1xYtEwDYYXTpeVmkwUrhfnKtPHuWUxBksSMgPRd6AsDm/u+LeGJBT6BJpQGQOMD8Cg79KyJfM4gishk/iUnFdp2QgXqSgdZy44sVxdJ1SU/EiBa1txpWOl9UbJ0aczZFaDPeWMAywuK6MUzTxEqlUeZuMj/pzE9BD1J8fp5ETAtkIiEvZ0O06oXhxvnqBITer8i2Ou/lTSbwQL9oQEC/aUNmX31F1jHq/gCZfoR2/SNVoOMNyiO+uxAABPFp6981Y4T0O28sSR9e9EOhEQFzqhObQAeLFodXfWXnxohOaQweIF/tX/8F1bJ8RCV88MErpZrAw4eEMFpCGhgmXgl3h+jEPXPNtaYfDAnWWOwMBcekM8HacVLzYsXLPqJp4cQZ4O04qXuxYub5q0nE1vk6eGAjfEva1JFWgJG7q59IrLjv7Gk7rI4yzHNyEQ8PJvgNj76r+BX5XjO8V/Qz3/8VBf370sfVFAYjL9JRp9aIR8hzxw80+f8OP5aqtaUQcbgrapRvQAzF7ifq7D2d6DN/C7+7aMBmoxxJ82jSXBvAUL/LbGfFiBS3pAL/VXiTqaABPtRc7aC+kYzfGLDH2XE2fsJCObULgTmKz46JzwP4Dx+8YlHLjfZED8rlmjRmyc/ge5hOE8c1hPF5YOK6tfFz3xn02rny4ZqNYkxOEcdbkQ3BPQ4iZ08ApUr+tyAUGpocGfsQMxzurC66pK+JW4c4wOFrGFb4Wf84z8rd6iE8TcDrAM4sXTI+De+HIIZ5vzckHywv5ihcT8KEFzyxeUA7cJO0F5LAMVd9gZRxzRjrxQrxo9P3iRfd4KMAm69lnehzqE1Y89jxXx7ntO/Jlx5Dcll8iUZaVg3SjHaw4GgxXPsETnM3C4iuV2ZlZGONdA4RwU6WV7yf4h7Mp9KcxU3OQ5zo1eN62AKT7Bn/ecjB1WBfpgTNNlR48KBz8Vy8eIN5IQ8xdPFxTVxZOXS3ionqIT2dqIcIzhxeuY+JzxqJAHmcs+S+Sm6mj3xwuqod4cSboEZ45vFB7AR3srf8RL9yDtetxyQQ6Vp+w8md/Ah2f277/lNNFMVNaO4/RsDb+gTA/hNM4+Jx4PGB6pg3k1CwrC+MZB8Pif/NpgNC/kuFlclDU+Jcfft9jf9xbHWsyrEx2Rjy+gaYTgy2Esa5d5URYVX9cE6fKwmU6HMS5hgHuG7NS8KNhw2V9o7BC3GzutOVBeeaP61XyCeWq4WjlXeqM8hTjBWR/DevLvHA0uBTXHXHEi5HPUIzdVPfUVZcs6sfCcD1ne8HBTltfQ56xHG1h1cywldnOiB/WQ+3FCM4BM/ECOJE7OHixyLgE+RbrRyC7mI4hW33CiT/WF1ZtkLVLdt6qjoPyJ40HmQ6OP42xpcnsOjOhAdprsHQJSPFHXq3GB2VYWCwP/pxSbAyO4VfrQL0Mq0tteRvicjlZQ0aYF8LdkoHQL+cacliGhiGVI6svTVc+8CfGtcY1lsNwHAS9agxxTYwaS+zg18AFfskEjcswxT3KsUo+tWGWU1/ISeIS4rvXBdo5zBN+xXgB2eycKs7h2pZgVn5hWUpf+7qS341OwsLiMsC/eDuDPBrPUlyOMfeQk8QLyuxKA/9ivLC6II9J2gtf1upPFpM/9uzTb4IXKGuyjsfiEMbrysdj1fv8Is4q+hFfVvECz3moW17DqU8IxpfAY/V9AsqY/Ox3pYH/Ktt3lIvkTDZYLpHoGgfdndOp6C+XE73Hg2R5hplxyUHbhyvZKL4PI2Iqi37858P5454kpMyffbxw6Ri9KDv281GrJSy22b/yT7lAGUiy4sulhvIBDu8R5zWOb7iOl3xZlbhc5ksU3sAIMjjwXPMyutXxCZhx5m92LiFfvtCCyyZd3rjnW+/4rzN1zY6sGC8gO/5+E58Fuk+n0+y/4oWHHBzobZdK8mJ2rQ9nuHpeDOlruIrjYgzlI15UOC4yLmHbjRJU/ciQvqrSBhdIoz7h/3js8tkf4sUan2OUmWN3ujY74BTS88vEtHay/6EAKA3LPvaDfMvHzeTgvvZvI+45YxL7WZraPz2Ix39DPzMPOA6qTSatSXjXy0M/i9MSxg69lm8cJ+UesmhM9c7mpMjrituXD8KIW98SidrmeuYBx3/JazjgvpUT8J+ljl119+U1bpju47LPzifgshiXkHdtlsNjRMVW/yjxGkcxXpi+fFlauWNxSp19HavnHfeH5oXhDBw6n1mPWTFe9OVt5Rtzhhy271m88nXcDC+mwmwI1758PGbiRbMNsb6nyLgEuHf2I336inWNuOoTTmMb09cmxgopOjad96VBWNF+vy9vK194RnxbgVFbCRXG6bq+iYBrCKDL2gBzSjrq181+ID/+08sC82Fyzt8T1PjffHaytEDi2RHKMj++qthmYJyfl8ektgGYlxaf16F7iZt/hx5bv/Y6vRfiENWJOFMHziEecb6Dgw2lc/DjdduMl4+x+GmNfFqES9AVnx3q859IK3y23TNE/zl4gbJw/8FH5BW+OIPZz+XEi0Sk5+BFYpFKRBcvElEVL9w4ZYlxydn9iPqEGtkP/eyv8DnmM0UXj1dOvj2/lz6MA5tqANsTPzsIoPGNUzRWOE3JwdObQBjz5hKm2KigfxjPkvyJi0deFmdbnKNi4Mcp3Fc4X+FMI4zLoiibdWxz3Hi25oF5W5nH+NEI42C1gR/qy2/a3MdB7MxwvIvrt/DjmlfixlmiRlr4r8KhbGvk01Jcsmc35jgbBBqioSvGC3CHzzZndDj9vogTL7JhL8aL7BJNmFC8yAZTvJh/XDJFP6I+wVNez74DYk3PsY1J4vHKcCMFZTIS/3F3S6x4v6fD1611cw/C+FBPunwL8mgkTCqzTR9D+SD8MY7O6fw2mWP9hvIeK2eL8VB3PisNPsFvMS4hb86G1ZZ/EVs4GqO1JTS4L8ILyCXvq+VX/r7zLTRb1H1fmVHf1fEiLK/XR2e7hPAivPA8nKRN9GWs8Tms4xqvc3kxpK+p6jqUj8d81f2IL6N4EYzdgIn6hACPqZ6XFDnQQVafgHTJ7eVQGoSvpn1HWfjHZmO8Mgbbm0hIxxkGs8idxxZ/8A8vH9LK4f4Wbqh8bmBrc6xz18b0tvhb8qP1yvqXcKXklihrtsxEPq2BS/bPhdU5vqf/5LzwOL2C7Ctcc7M/G0duGN3ls7VBXkAVg25yXgQ5TtVecAZ+tbO+4kWg8XGX4kUTp6n7kbgPiO9Zgsmfff8sqE9oH3tOreMmi5o+k+s4yCL1OeZLeq5hoLBMSe7Sx+byqRcgmb1tK0nIGiKj7Hw4WIfbARA0VN7gPl5qFha5ARpk0Mip3tARRo6unwR5RUHDt4XzaVsONFyonhgoLx804kJ8uEeG+F4Bg6X2KyD7Mg51y+HTUlwywyBuOHgfL3ecnBfI428czKv2x8A5zwZkrdJtjBcpGE7Oi6nbizXzaSpepCjM4iLvkv2VeGFAZ5wX5IX6hAx95SRZUMcpxV3Tc8z2qm9M3lmvSx9iiZ/ifrX/YHXW4hTA6TcOqJ+CQBw80Yrj0h3bkI/bhqMS40GebfI3TBqJpvJA2ZhHqXz4T4o1WpMUGeWlvMX2J0xSifFCUvm0GJc4kAPnqZu2f8/iVwuX4MXt8bBuPuZmeJGIdAleqL3o7n9a24tEnbno6kdyUJstzSTtRWpp1SekInZW/EV0nFjiVbTvfmz+AGWv9p6n1MMZLJ7cHDhzw/omDZbMRpsdKo2cKV3DAKJwKIr5UElnzcpQlnet+VggzsyP9ZPLQCCDT0tzyXELVXUGMPjGZVlt3zwSLzL4YEk2yAsrutoLQ6LAuQAvWvWlfqSA8gqKXJgX6hMK6tZEL6xjK0Zre2GBOK+l3+fsCl3WH/U3T2ndL5dzmLDAe7+XINo1a+etvrMqyo4EBxsILiVyy6VwzzdumSOhfsZxFsYj8rH8HuKClr/cDAgszSXkz2V5X8EPviGPHHwEP/fRyKj64kUESMnbpXmh9qKkdvNld/FihL7Uj+TDvvqUU/ICstQnrFDjU+p4RHthCKyl33cfYgUGWX+mXyChqxAqzoaQH9vjDEDfMioDYBdn1JtGBV97PEudkR8/XlQ8L+TDt76RpHIzIbAFLokXM5EhyEa8CMDQZYXAObxAWvUjFZL7upibF8hPY4WZKXRUHaPetDH+lTsGrgwW6suD+OxoA13U+wPqTMuvqEM+XKbzBXllWZdjC+fzuYN8Nrm8b2w91xhvzVwSL5ZjjHixHPZrzjmHF/45Vj+yZsWeWba5eOG5pLHCmfrKSX40HaO+nBx4iXFp9p7XcEkYN5tzCpHLmbgp5kiOy2jcBy0LV5oNQ2ljhTNlXA4kY6WwMjvEr5JL4Ld40aGwmbzFi5mA3lg2ObxQP7IxJWcUtzgv1CdkaGXaJEfT8UvAN+btu50o12ZYGMsP3J9jwHuo5USo9yyzH52amCgA9aAVy1c5X08kUmISEVgjl8SLRCUWiC5eFAB1ByLFix0osUAVSvNCfUIBpSWKPIqOPdfOXr3VMFiIN4RzszaXSe3u+xqJfFJ0ISAEhIAQEAJCQAgIASEgBBIRgD3BN5R9xvEQNsVZK4xqS8KCcvDtQs+R0dGWhgUQ6FIICAEhIASEgBAQAkJACAiBVARgQ3ApOidAuNH+LGOFebfOsLiAk1XEjLgf4uyMKFNOCAgBISAEhIAQEAJCQAgIgX0j4FdrvYMNMcme6k6DhTD6qZxbyOzLvmFV7YSAEBACQkAICAEhIASEgBA4FwE/u/Iz7Iesj0S25f8/C120EDRjZpUAAAAASUVORK5CYII=\n",
"$\\displaystyle \\left(- {{img}_{(-1,-1)}^{2}} w_{1} - {{img}_{(-1,0)}^{2}} w_{2} - {{img}_{(-1,1)}^{2}} w_{1} + {{img}_{(1,-1)}^{2}} w_{1} + {{img}_{(1,0)}^{2}} w_{2} - {{img}_{(1,1)}^{2}} w_{1}\\right)^{2}$"
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
],
"text/plain": [
" \n",
"(-img_SW__2⋅w₁ - img_W__2⋅w₂ - img_NW__2⋅w₁ + img_SE__2⋅w₁ + img_E__2⋅w₂ - img\n",
"\n",
" 2\n",
"_NE__2⋅w₁) "
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"w1, w2 = sp.symbols(\"w_1 w_2\")\n",
"color = 2\n",
"sobel_x = (-w2 * img_field[-1,0](color) - w1 * img_field[-1,-1](color) - w1 * img_field[-1, +1](color) \\\n",
" +w2 * img_field[+1,0](color) + w1 * img_field[+1,-1](color) - w1 * img_field[+1, +1](color))**2\n",
"sobel_x"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We have mixed some standard *sympy* symbols into this expression to possibly give the different directions different weights. The complete expression is still a valid *sympy* expression, so all features of *sympy* work on it. Lets for example now fix one weight by substituting it with a constant."
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAzUAAAAsCAYAAABc3ZYiAAAACXBIWXMAAA7EAAAOxAGVKw4bAAATH0lEQVR4Ae2djbXUthaFgUUBF1JBoAOSVJDQAUkqSOiALCrIIh0QKniLdJCkAgIdkFfBg9sBb3++ktF4/CePPLbHW2t5LOvnSN5nW9KxZM3tT58+3bIzAkbACBgBI2AEjIARMAJGwAisHYHbt2+/UB2vdDzQ8a+OX2TPXN+2USMo7IyAETACRsAIGAEjYASMgBFYNQLBoHkp+wVj5pauX+v0QNdf2ahZtepcOSNgBIyAETACRsAIGAEjYARAQEbMe50eJ0bNI12/1fHwjn7sjIARMAJGwAgYASNgBIyAETACW0CAZWfRXQfPg7sxxGcjYASMgBEwAkbACBgBI2AEjMBaEdAMzcNG3Zipwf3jmZobIPxrBIyAETACRsAIGAEjYASMwLYQYNOAaqOAXqNG69Z+5tjWvbm2RsAIGAEjYASMgBEwAkbACKwZAdkYVzr40H+SU14Mmr80e/MbAjqXnynhM8X/yG4CJLQzAkbACBgBI2AEjIARMAJGwAiUQEA2xrXsjZc63ubaG8rDpMuV8j2NdWnd/UwJv1MCLKcvKTAm9tkIGAEjYASMgBEwAkbACBgBI1AKAdkdTKR8I5vj+zEyg53CDmi/kD5cfzgyahTBn9n8V8e3SvyOxHZGwAgYASNgBIyAETACRsAIGIE5EJD9wbbM/P/M733ylY6NAV7p+DVJx2zN921GTbW2bay1lAi01wgYASNgBIyAETACRsAIGAEjkIWAjBW2acaw6V0lpnQflYYJmAMnu+X2gVETrJ/qD2wUWf1T50EOX0xGQNjyMRNKQGlgW+3UoLPdhSFgXV+YQjd2O+bfxhS2QHXNkQVAL1Ck9VYARIuoEFgrl1SvkyZWmkYNBs2/nqUpy/pAHqbUKkMxKO2Brr0JQ1moF5dmXS+ugl1XwPzbtfpH3bw5Mgqm1SWy3lanks1WaM1cUt1YWoYtck9j5Oxv+ustnSWIGQSEVR/d6GxXDoEnDVGsA3wUMG9E+XLjCFjXG1fgxqtv/m1cgWeovjlyBpBnKMJ6mwHUnYpcLZdkyPAtP8ekv5OpjRoJwJh5F2cT5LcriwBGY3TR+kzDYpzP20cg1at1vX19bu0OzL+taez89TVHzo95iRKttxIoWgYIrJlLL1W/51PUlP5PzQ8SkO4kMEWe87QgIEPxYSOYGTHcPzcn/14KAtb1pWhym/dh/m1Tb+estTlyTrTLlWW9lcNy75I2wKW/pCP+lPM71RX/aHeHlGEZFB+xZ2UeXUqSUGW90PFMx8/BHwf4Sap2r9K/DfmoK/VmCRd/2tOcSqsEKPy1jj/bpS0ayqYB3iigsApWqm/rurCec8SJE3tvb8y/HsKYHxU45kgPR4hy3zIA0Maj3Q7cWlUbIEOG789Z5fI4l1qVUaNM/NnmLQma9X9pRBw+/nmjcn7TwT7UzAxheKTTYArqdKRjWuqj8nzSGXnXkvWHzl2u2kmhK/Lc4Tw8KvMvMDh32TspbzX6tq6XZZzw33V7Y/7182/v/AAdc6SfI41Y9y0NQC7hcu/twIrbACZZKtskh2dx+Rm7cM26hbOA46MfdvyqDRD5rxXONY3FmJ3AqCM3inHzRscfktFZb8WN+mdSyTmLCxhcqV78SZBdYQTWpG/rurByM8Xtvb3ZA/90j8zQ06dkvyDaOz94nMyR8Y2K+5bxWG0p5d7bgZW3AYzxW1dh9XEsGjVYQ53GQZ+AjDgMjLblbVSc5WgM9uNH1V1i2W56k7uz6f7A+KHqXxk04fqDrmedHesC0uHzIWBdz4dthuTdtjfm3yiW7JYfoGOOjOLI6hJZb8VVstt2YANcqmwS1ZMXV6Ptk7j8jJmP0Zkm0opBfZuLhkxXfFueTYVJKXw3xLKzN/I/4ZAf42xuzFWE3TkRsK7PiXZvWV3tyUW3N+ZfLyfSyF3yAwDMkZQG2/Fbb7PoapftwEa4FMfHo7+7hyF3E5q8T/xFvQLwKgj80CMYw2rQSVbcuxqZ7CrGn1rWsx2hLNIQ915x9dIExUFgPjyirDjjE6e3vlFY9b2P0gHijzr+p4NwymibZaKDID8yI34o4qnSpx84/a0w6ssyu9opTRxg1WH25CGwQn1vWtcDeML15+JttVQ0cP+Vwr5cE5fDPUCkPbY3m+YfSpvb7ZwfwGuOjCDZQFu4xFhiNXobwMb9xPrHpavhUs+jGI2a+z1pWqMYbPPR/c8amLBZQPFDsjEiKONFU77CMCCIe9aMa14rDTuZsUytqqP8US7bvsWwqgzF0eh8jOGc5WIccjjqMuWPODyTP5XHA3ogJ8pUOLMvfybXsT4YQcVxtMxjTNEBuMhZ3wU4l+B5xHvF8cy8jjwMmAN++rzwTLCZB2k5189rzDf3WWXG59DtTQFOzK2vqfKlZzhat+Fj5Zgfx+3oWOy2lm4qR7hPOfctHe1Hgo37iZu+ru7nhE3sfw76xcApj1M6ONXWtghLHsSsNv6uMmRbQcoz1WE4dLkvuiJiuG46nf3AaPhXbwyYQWHw9FB+yMQ3OjjWSkZLL065xzjSXSt/PYuj64jDFwpPZ2UIP6q3yqo6VMXd01G5UB/8DOjsZkbA+i4LcANPnrX6+Qkl0SDXm1zwnCgPz0qVTv7KoOE5IL2umZnkjdCYTUDIUtodPbdJAW5vEjB26jU/dqr4odtutIUeSySANbBxP+FxacKOWbyDfXVaKkZNbNj7lmowQCEdA5Qc95MGOCwN65MdjQmWek1xDKC+Cw8aH97H3dVYghaXmCGXTQbehfvAqDkwkHT9iERybDOdOtKlRk6Me0W4ZF7HAMmOMtrSx2RgmfXhU51xRR7uNeh2dK0C9lM51FbO6vW9Nl0P6C3F8+DPeMkXFNDkNs9VNH4w9HnBEB3PEv8t1ct3xZ/StsSy0rPbm4DGEPYpaOfww6MJ7QbGMgZ108Gb+5LJUuGmg5cMRtuc+ZGgYo4kYHz2pm3hKscSc+pt4DlNsXE/8ZkzqW9T49IFuZRi1uWnnR/tMGpGOXUQDN4nvXElr0CjnGjApGXGCseBURpX+5Wft74Mjpp1oF64euCktAyucPwXTuVC/fFXnaOum4Oz6o1Dku4m4036A0NH8hngUW/qlDpk05nGOqVxlV95mdJOja2jNGMCQh2Q1TTOxmQfnaannAeKu6/ymzh2yg64NPXXmX4oIsjDSFylvlWvRXStcllCydsNXhQw85jyrVNvCZ7wGH7HFwTyVs8Ns5vN57TJdV4YxDQxLg1D1oEL5RblhTCgjF23N0vxD+BVNm1kW/vUyT/ytbkGf+skKoPnnnY/nXGv47s88M38uEGnjSM9uuuCdFJ4Tzmr4Ag3pTpupm/pwbNVP0rvfsL9BBw/Gqfkcik8K8Xa/FbCjgzEqIkDj7YBwEgxo5Ix+GWg1HSx3KHBcWUwNDPrOsr8J4ljiQz/YRPvLYmqZmiYPWo65KeDOJR9MLjTNesmkfl1yNysc9esTpVc+TGC0gFmEDP+FMjG/eEYLM7ihsoRDn8ozUsd6Zv6WeoyQujq9C1cFtG1yuWtYm3I6Jrd9vgOpnprPVJvpH2ntNE4QQVH3JZc+FcvtVR6NudIHY0cLn02b0Lm/911e4POBfHZ2xqVi84726eR/JufHTez77HvSMvbbX80pLsUpFP8Q+WsiCPc5ur7liE823SlPO4nboBxP5H0ExO5NEubr7rE9rltHN9G6zqMjNkf46jhyfoQXmXwEB19cK8wlha8HZKnNK0f3yv8fZpf/ng/T5AphxVa11XXH1vCYp76w66Ql6U0Vd10ZgAXZfL2Rkk+yw3pKbBK0xKH4g/q0kyTcy1ZGFzs7lbf2xz+vnIUB271h+NzlD8kM9Shxl3XBxjr+uz6VpmL6Vpl8zw0eQw+6YeMvXpTWgyVA73qGrlNbHs/4At5etMM6XdqvMrebXuje1+Mf1FfqkNn+6S4Xv5FGUNnyaEdnsQv5dstP8BVrpMjiuvU3ZBOcuL7ylHcGjhCHTbTt/Th2dSL0rqfuHkOdtsOiANF24A+/iku+3lWHsbcPH9Zm5jdEdmvlQnHcpXZnMphKdgHWV9xOpeZEG4UUv0UCyZMxycdb2NYOL9QWLpen/zkva8jXTtdzaKoPGYSAIWHt3LhmjLrt8shikYc46A584KsGMY2zXEmpwoL8ioR8selaDF9FZ78PJf/P8n15r3CA+6wVACcl3Jr1PciupYe4Da6aH4zgJ4qjqOkEXrj+ah1Krnk5TmjEaycwvC3zXjGeF5W8M1Z1tKgKnOBH5W75/ZmEf6NVdsI/o0VNTndzvkBbubIMHsusm9xP/FZ8TtvB87WBkxs8xnP4JrjmZvQjt+7IbwanHakKRnMuvnneqjigOkbXX+rG64HR9y84ln2ki59YSDGTmfRsIn15WYP/iND6diRCYMGg4d89Xc1uqRclks1DQ/C03S6rNyv+n0cZL0MYdWgUGEsx6E+b3TGIKzqLNnUrc1lfyDbJmSFYRhqDHrb8Ju9uivV91K6js9Vk4M8JxglqevUmzD9TbxmN0E4H18KfCn/K4XFddjMErbqXGl49pgZisuQ0nLP6d9re7MU/3J028m/HCEnpt0rP4DNHBkgzwX3Le4nDnW/13bg3G1AbpsfxyzN8cyh9ppXenAJ4s3s4BIw0vpoxyBg2LVEjkak6FIxycOQKCqzTbdD5Sj+iY6DpUptci4tTPfMM3Okb4UtpmuVzewJD3S91Azc5TBMDpbp6HoWvUkuvKyXqYVrGk+3HQUxEK6r41+q46D3zvZJ8SfzL8g44HVahz37u/gBJnK9bZTiL6Zv0b3As01xRPWd9GyP1ZvSuZ8o2BavuZ2Zm0vpvQ/xT/FZbb7S83L0aDyTltnmv6NMOGZKaOjsRiCgN9E0CrXT9ZUu6AjiErQ6LnjA9mDmqZlgw9dY0dz/xbpMfa9B1/ENR9RJ85rw4noLOL2Q7Dfys0EBjRgfq18q93Vr87sN8m8MKCX4x4x762zhmApcSppMfnDba2ijxsB/8RzJ1F1pvTX7heY1OiqhgwNdh3t2P3GAyukXC3NpzA3kcomNh65luJBvtLsbUrKE6plA4Q1vloDRJV1IQmHEwwhW9xKsMGZ+13VzWVt610e4SgaG0Jgdir5PykpljvLPXE7b0qZR9dpCoon6XkrX0Xi4amDLNS8uUjeH3v5WAZR1YNyfwt20wnv0b4x/OSo6mX/mVbXlcLH+KEd5Me3a+5Y1c6TUsx11kXF2P5EB1haSLsilHHhy23zGx31j6tayo1ETM/JHSrt/89WK1OdApoZ5Y/KDiMQADmuSZUhxEwFdHjmU2RxoshwH3CP2R5lKBcxcDm93YiNZqsprkpOr78V0TQcuTqKLtjduzW2Vi+tN5d9bk+IupC6b4V8m3sX5l1n+pSTP5Qf33dpGTQHEfcsU1Oo8uborojf3EzX+l+RZhEuZAI5u88PY+pHk19+yjy2rMmoCyRlc8/G7jZoe9CY24gw0MYRKuiMjCeEiA+VAhJNmd5AVXGs5MVLn0lPiiejlvRP0vbSuK90LucpYFh9YAtb2n00XrbflmVOmBhvkX7zxXbcbEYS5zxP4QZWG2qhW3blvKavNCborqTf3E2XVuai0hbkU77213YiROueMOZilwWW/9L9zk6/6ZclIFJQE23sqAiLcNTKC9XmSODoWHTRILDvA/1oHO1JFB7G+1nGSLkeUE8tj5xDeEtgJgaV1rfLZQvm99MfOfHDkscLSLc+jnqy3iMQFnZfmn9uN9ZOpiyMjdOe+ZUH1ltSbZLmfWFCXSxddkksj2o14uzljDiZYmn8AHuX0nm/r5qoEqhgNFn9UyBv+vqVUvQId2Y6A8MXwYDvps2Cr8vgT0NnLUjnsmgdZ7QICW9C19Xa5dDX/Lle3pe7sFI4or/uWUorIlHNuvak89++ZOtpK8jVzSXXDFvlpyhi2NmpQRLjJHz1InYeWwvdPYYsFOqtTOSw5mmTl5lQslHNf9+Qliw3g1qxr662hrAu8NP8uUKmFb2kKR0Lb4b6lsC5yxJ1Lb0HX7t9zlLOxtGvkkurEBMBzjSsnfaObLj9j6QxTkixp4gMdu/IIsCSo+lPQ8qIPJNIQsf52Nqf7YGaPpU02aNpRXqWurbd2ZV1gqPl3gUotfEtTOOK+pbASJoibXW/uJyZoZZtZ1sil54JyzK7ArYgfzNSQIgy6n2qw6iVFrZCdFih8zzKLcloth3PrPrCm2cb6ejj1PlOsUdfW2364aP7tR9dT79QcmYrcsvnm1pv7iWX1e87S18SlwLuTVosdGTWAKcF8+M1SKWZu7IyAETACRsAIGAEjYASMgBEwAsURkN3B7mhvdXwl22PySqOD5WdJLdkt6akK8TK0BBR7jYARMAJGwAgYASNgBIyAESiDgGwNPmdgMoXNASYbNNSmdaamirixmiiE7yZOKgR5dkbACBgBI2AEjIARMAJGwAgYgYhAWB32WrbGyd9odxo1FBamg65U0LtYuM9GwAgYASNgBIyAETACRsAIGIFTEAizNF/Lzsj+o822cv8PY4mfAbzaDhoAAAAASUVORK5CYII=\n",
"$\\displaystyle \\left(- 0.5 {{img}_{(-1,-1)}^{2}} - {{img}_{(-1,0)}^{2}} w_{2} - 0.5 {{img}_{(-1,1)}^{2}} + 0.5 {{img}_{(1,-1)}^{2}} + {{img}_{(1,0)}^{2}} w_{2} - 0.5 {{img}_{(1,1)}^{2}}\\right)^{2}$"
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
],
"text/plain": [
" \n",
"(-0.5⋅img_SW__2 - img_W__2⋅w₂ - 0.5⋅img_NW__2 + 0.5⋅img_SE__2 + img_E__2⋅w₂ - \n",
"\n",
" 2\n",
"0.5⋅img_NE__2) "
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sobel_x = sobel_x.subs(w1, 0.5)\n",
"sobel_x"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now lets built an executable kernel out of it, which writes the result to a second field. Assignments are created using *pystencils* `Assignment` class, that gets the left- and right hand side of the assignment."
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA5gAAAAsCAYAAAAAexdDAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAXUklEQVR4Ae2dj9XUNtbGFw4FvLAVBDpgkwo26YAkFSR0wB4qyCEdkFSwSzpItgICHZCt4EveDvien1/JyB6PLXnssTzz6ByP9ffq6rlXsq6lke99/Pjxb3ZGwAgYASNgBIyAETACRsAIGAEjYARyEbh3794r5b3R9VjXH7r+Jdvy9p4NTEFhZwSMgBEwAkbACBgBI2AEjIARMAJZCATj8rVsSQzLvyn8RrfHCv/DBmYWhM5kBIyAETACRsAIGAEjYASMgBEwAiAgg/KDbl8lBuZThd/penJfP3ZGwAgYASNgBIyAETACRsAIGAEjYARKEGBrbHS3wfP4QYzx3QgYASNgBIyAETACRsAIGAEjYASMwBQCWrl80svDCibud69g3gHhXyNgBIyAETACRsAIGAEjYASMgBGYhwAH/jSH/NjAnAfg2Utpn/P3XGev2BUaASNgBIyAETACRsAIGAEjcJEIyL640cUBPbOdymNc/qZVzR8h4i2ys6E8X0EJ7YVq+5ZTmc5Xq2syAkbACBgBI2AEjIARMAJG4JIRkH1xK1vjta53c2wNlWMB7EZln0ecfIpsRKLSu4T2pVjjrcJnKEClbJotI2AEjIARMAJGwAgYASNgBHaKgGwOFrS+kL3xdW4Tgp3CSbL/okwI/2kDMxfBDfJJSHy49H+6/inBvd+ABVdpBIyAETACRsAIGAEjYASMwBUgINuDz4zwbcufppqrvBzq87OuH5K8rGJ+bQMzQaQ2rwTX7IcueZNQWxvMjxEwAkbACBgBI2AEjIARMAL1IyDbg8+OYGRO7pxU3r+Uj8WwjpPdcs8GZgeSegLhrUDzsVIJ6o96ONs/J8KWPyLTIehEYNuceKW73YUhYFlfmEB31hzr384EtgG71pENQD+xSsvsRABdvINAjfoknk5e4LKB2RFzPQEJF+PyD69eLiuT0JFZ+m+M9tCJHivsA5SWhXpzapb15iK4agasf1ct/qzGW0eyYKoqk2VWlTh2z0yt+iS+2PqKHfJQ8+NZ57/4MyUVqqcEy8oawm3+MFshi3tm6VmPefaNPw2Y95Ic3DkClvXOBbhz9q1/OxfgGdi3jpwB5IWrsMwWBvTKyVWpTzIqOfeFa/bnEW1g1qnZGJbv4ypbnSzumisM+Ojim5k0Lqb5vn8EUrla1vuX595aYP3bm8TOz6915PyYn1qjZXYqgi6fIlCrPr0Wky9TRkv8/g5mCVrny/uNqkpPZDpfzRdek4z2J70mslKM+/3u5t9LQcCyvhRJ7rMd1r99yu2cXFtHzon2MnVZZsvgaCp3CFSuT7+Jyxvt8PtSfOIvcvfHcrMHV9evuv7ShSVrtzICwpk3GRxAUyzMUtZU1ytdL3R9H/zR2JokpfzvQjl45bs36Aofae0v9ze0FP9G16+ThM+fgQN/fMjPwrhXKm/LemE5l5CTTlz7eGP9G1EY60cDjnVkXEdqnEdYZiMyK0nyGFDXGCCjkrNK2Pn1VYkcY95RA1PE2aYJYYyI2caBlOaDrnQJONbv+yECXxIF9odJy8VIHvx5963q+VEX37phxZTBO1dO5OOlAy8fPuoOvVvR+kX3Y645lepY4rnjxTcPht/A4Nx1X0l91cjbst5W44T/VY831r9x/bt2/QAd68i4jiSpfq4kYFyK12NAtWMAi12NXVKqa5NbZCX0SHjWiprKs6LFKZ3+1EaedDjNdFWsJBP+tItMWmNQ/lvFE2bwzjlRFR7RCQzNt7p+GZOx0r5WnmpcwOBGfPFBWLuFEahJ3pb1wsItJHft48016J/aGJ/zxS/rrl0/6E7WkbxBxc+VPJz2lstjQNVjAPP7wZ2JU3o2aWCKACuYfC6DZdI5jvKrrsbNYaq0TOgA4DDL0C6oD4N+VQNT9DH2htqBIrFlFsNrSt5gsctTbtU+MH4i/hvjMoT/VHj3eqp22SUIWNYJGNt5r3a8sf5lKd3V6gfoWEeydKSqTJbZ4uLwGFDvnLSxR6TzxQuF9zPUhMn4kDGSUbTJcmr53HrWzocxco6DYFgRXNvARCZDLhqVx9KHyuwqTp2E/5myNfat/M+45MdQXhtzVWF3TgQs63OiPVrXsfHkoscb69+oTqSJV6kfAGAdSdVgH37LbBU5eQyod04a58bZZ7REDXkQPdzVcTBumGzz4P8/XRiWEOX/eQdO+Zmokw9Hmd9ZBVI8ysIbCehxNQfA6P5B6cVbaFRuUxfaQ9vihGhtfj6sVYHachNo/zlSBzKbdKIVv48DTU5nfZ2uAoa6yENaR/YBU1a3o87J2y7DfyF/8/9Q5UP/vtWFnhFPHYMvPJQXYxGaET86xnPlJy66/8oDv2wFbt0ZZdvWeWmeCuW9a1lP4Imuv5TeNtvZg+7/rLjPatLl0AZU/RrHm13rH0Jb2125fgCvdWRCySbGQeaa555HVCWzCXyqf054DKh+DIgG5qOJrnqYrMkIB8qQQEf9SxfLoDGOg31IZMtkExfviuPQhqdJmLxM/tt8CqPcivoUN+RXnrbOofRT4kS75XEOHZXHGKGtBxjMoTdWJtQF3t+P5TslTbQx6KjjVZ+O4jDmSHvRT+uHlQd5t5jIH+lynHHUn6YOpTW6FeO5y8U06HC1dcoP5g0fuqf00Ke/UjrRr3hedvyahCM/HZ2M6b6P98k5+CADyslZ3hNjXg6+CZ4Heq80+sybSCdgDvhpf6FPcBAXebm3/TWWW/uuOmM/9HizgE6sLa+59CVndLQdw3PpWD+WH4dzsT93vhN0xM+VkbFDuEZ8dvmc8BhQ/xggGTXz8dIx44EKsnIZV3T4XEO0VknCz0mytwSiU34mDRhu6X/WhrYZ8mYpzRNJtHfRonNQtnEKv5Dn77pYsfp7mtZkGPiZKPNY6Y9EZ3DVa4BcG6VyGFw/6/pO5TsYtJmW9ZS/IZhfPzI/5sB/1AmPdFUQg/IP4QXGTGSfyI+O8J9OHKvZrV4FXGMa+W5VPl3Zjjgg/1RuxB/wLXrN5EZpD3U1LvCDn8m13coIWN7LAtzDk77W9p9QE0Z8e0AV/URl6CtNPvkb45J+QH6FWbHnzXvOAV4UWdod9NukAo83CRhX6rV+XKngx5rdGwc9j+iB1cNn788JjwE9+VYWnHxO9/ltDExFMhlBuP/pZWAS0540mqQ1252k3Kx4UoY36akhELMeK9+kh0lPalyynbI1KpXOf+SgzcAy6JQ+WkZlf1Eevs/IoTT9SdogTSKVH0wwdm91/aywbrPcD/CQWTJ2sLHtZPGFAJPFEoeRjLE/Rjsadhj3cxz4fimsMBo5NCe2Gxm1cpYfWbCVmvaSt2OsKvxUF66/NZt8Q3rGSwA+N4KsGifakcZQ/pgNLIv/uNwWrsRDW4NsszkK2M/VoaF6qpd3bbKekFuK5zcCvO0LlAsC6Ot2Osbx0oWXPdFRnm/Xjuq70umTi+pFZGDgflXjzRT2A/isGoUezRg3eC7yXO879OaRaH7bT1AYvTz2DPfzKAHMOpKAcedNx8Eq5xFryiyjj6b47PU54TEgUfuN9Snh5MDLGF/mNPBTAEOx3V4Y4iDW2XJFfLyUxkOG1SHycJWWZ5LU2Tal8Add7RavwAe0j27tyilDeV3tdrLYhqm7ymBgwtNqW3hTHlQPmNDeZ2n80v5QxwEe1JtTv/KwGvKuz5fimHzAfytD+SPNAxnGtAE6TIz5z2arb/jl0NPONiyFI2adbcXk03VAI6Wp9I7+pWkl/sBDR/9LyufmPVaP4sG4xTyX3hr5Ai+DfTam9etV/OryVh2byFr1oofxZVWHB8VPyk15GGfBsx2D5IfmwVZxxbX05e+MpQrzIqfTN/tyWCsc6r3q8UYYtLI5BWfRYbwrGmuOlVH8pP7l8hpodcbmgrLo5VXrB1jJHeiI4orlnYt7mu9YPYqvRUfgA5CqmkeIn5NlJhonPSOC7uz6ORFk6zFgAX0K+jA4bgjnWf05yKf472YPZC1jfHGxupW65i2lmO28Jce6VibefLI61aQprukgPcv7c4il5alL4Vvi5V7qSt/Kw0Oz8kVi4sgPL3E1rE2CngKTZagT3nr8tXSOeVTuR5WhjRhU59haFrF5dIynheJpE9j1Xay3I/N+JoWRx9BqcKT5e1Lmufx8IzO2LUlqVi77ekf6gbwlB+Kg3+iBwlGXGj1TfJ/nY6udytpuGUxXVZv4kh/xQCemfTj0cBU3VY+wnbVKvwqzd3hUJW/hR/89u6xV7xK7K1j5eS8Zp/3tQLdVF/rXbgdXfg7WSh26ikv75l3M+r9XPd5sqH+j41NF48ZV6wfdr68jCo/KbqkuO1VPRTpS3TxiCZmJxhLPCNRh788JjwG9ecpU3xwaA6bKzOnPohnn9UNz+CE2OnEU5s1QZ9VM4XaVijRdzRt03Tnw5mBlSHHi/dOKk8K8tW9XueSHBoZpsyolf4cGabrgo31TT1453sR3VqcSGtllRAMjeJBOpHfsTjldB2+qjuWfG686oixmvQnOrTe0Z3AFRGmtzI7RU57BNxmKR1ZtefljexrdUriDocKsSPbjYpnOipzyscrV0NadyXSkiV6J1U+6h5+4mGcgDb3p1NvPUxIWLYzfjj6XlM/NO1aP0sDt4A1gLu0l8gUeWtwV7mCs8NnlrTo3k7Xq7qwigrEcP+1bePy6jspNaRiNnXSFodvHdnTMCGVG8yyhA0M0VDfj51WON2r3ZvoXZSEejo5PShvVv0hj6i46jMOz9EvlrlY/wFXuqI4o7ajspmRSkj5Wj9I21ZFQ/26eK2NY9mWivCc/I4IO7fo5IRw8BvSe6VFXSvQpp4zoFfVn5We+Tf8rtp/ui6FbFeTtQbsCE96qMOjFt+ZfKF/0s1+685855cd4668Q0IimTLCAMRyb1SqF27qUp++g33fQGnM5ZeClw/cYwTRNfP+kMA/QVV2QBXUU/5m2hLHQnj8lh7ZNQUZ08u8iLeJ0fdTFS4XUvVIcBl/rFKbsI13pf20+J4PqY4UNmTOYNi6EkWu76hKSeKBSBp1MHbRiHJ8eiSvaTVyg1+SXn5cjuJj/LvTpl9Xzf38K7t8nPOjHzSr9hq2pUd6byFo6iG6j8/2xCTk1Oo6cMuRG/2jHS9GlLP2M8blxisPfjK0hqnNTOi/7+I9yepBWJ8+aAdXL+Hmt480m+pcrzwz9yyU1O9+V6we4WUfGtecinysLPiNAb9fPCY8B5xsDZoz5zGVw/bnMXezI74OQhlHAQTYYijgm5hhjGBLEpUYAWxU4fEe35gAcKudP/HHCTzyOSQ2H62B4MJFKJzdMmKLBSnLqmDwxCYuO8JTLKQPNCNQUvaF0jCRW1Y4ZLUNl5sTBZzuhnEMgswxbfl+qTbGuLxT+p9rXTlTlZ2sxcurISvGcGBuNzMgvytf5Bh9YKR+4RR1gohldowPkiRHhTnyaLyb/IM9XgdbrGBl4jLr6VvEY5w3PpMV8vXvx4Ra98rUGMZoxQIbwW53nSuW9laxjv+rrIP2kP6YdlZswZZs+pzKj8/EFzWfyx/EafWf1fFDmob+wYhq3civ7Ju5ax5ut9K9EyEf1r4TIiXmvVT+AzToyojwX/FxZ5BkBdBfynPAYMNIPFk4qGfPjfKU/l5lmSYqJcp71EldMgvvbvm4UxzIsg23LT4jrbJeM6UrLLgNdXe32zUijtrt4xJivns/acEv5CRge28bLoL7odlbRQ58XpZm2J/qn6lH6M12dfhXLXvJdbabPHMhbcZvJWnUz3jCetdthkYEcRmJnK6HCq8hNdNHLdittCHfG10vWi3O1TbhWp39p24Pcj45PSj9Z/wKNjl6nPFyz/5h+gInc6Bil9It5tqgt6NludES8zurXuTJTvs2fEUEH/ZxIbI41xqpjurTWGDClg0rPHvOVlwWig7lMDk73VXALx1t8jMPWiVmsY1aeorXcpskzeDBFYRnodlbi0goq8rOCyEPHLgMBrdAwSLdOYfSKATNuk23Tggds96AHfb5zwvShTr/KKbSnPIXyrkHW/fGsHwb+xeUWcHol2m/lZ8cJDxT+xnCpuq+mre92qH85oCyhf+xEGVxFz2HgUvIU6gfNrmGMyoH/onWkUG5Ly6z/TOiHkc8S+B/IObTbz4kDZOZHFOoSFS2tTznMl+gTBwbeBnsrh3ab50HrO6+HSQ6g9h3bwNiu22yblKCYFLUnUipMmSZP0tjRMsof3RZCjHWX3Nnm+UJtZeUDJbA7goAwYmAEq4cJVhiWPync33qbUjnAVTQwSvv/I07LRP/XSV0xLvu+cj1D2y+zeas940x5byXraMjd9HAlzEuk1K0ht/+qAurqvGg5RXdThq/RvzP9KxHRyfpnvfr07WzpycnPoxLhxby1P1tq1ZGl+nWUQ8F962cErPo5USCwqawzdQmyB/OUqbpOTC8Z85kbj82nj7KyiYHJQCNBcDR3x4hSPP83wmDAcMCRnh4aw4Tpc100uPnPZ0YZZW0c+7s7k60QX9stCvIbMXb1b4QnhMMWFl4cfIMu6c6bFrZK9v8PrOjW0bHI23EqA+4R+07akoGV6+HNZ3xoLcl2LbRK5b2ZrCXn+P/lobfR/R0Zi8tN9T+sRWgXxMdu9K8Q88X1r7D+S8leqh+0e3CMmgOIny1zUGvKlMptEZlt/Yyg5X5OzNaZYwVLdQk6i+jTMYaOxGeN+WFe/VQ0WMgrdpsYmIFLGG4Nxci5FD49DChGN3elvZfnoRrNymbrxsq0mWSYKt/WB10k7Ax7xSMTUwwdDq6xgTkMUxMrrOYYhcdWz0dqmkw6MFgpITkOrbhPEhvJMFhPkn8vq/QJy/neGfLeWtaXtrsiX1gXmHOH+helcNXjRgRh7fsM/YClqTFqUHZ+tiwnzRlyW1JmfkYsJ8rNKc3QJXheUp8iBoPjRkzUPXeuiI2Gm7X4cv+u7Pl/JQgMyWKDLxiXGJrZLpSZZYFnV7JsRlZao2CXpXzl1KR3t0AgnZjqgJNI8ZDXhV6x4o7/ja54EjPlqSOuuBOe5TLqiXRZpecNmp0Q2FrWYYz7IPlx4jI68pXi0h0ZUU6WW0Tigu5b65/HjfqV6ZiOZMjOz5aNxLukzESLebCfERvJsoZql9SnjHEjNjl3zsFC13vxiBFc7O6pYHGhpQoIDIwovo+ZvVKnMnzssyQ/AzEnKRYbs0u1s5SO2gjPfJSe//uNbfcsJe38QkD4YgQOfVpnFXxU37NzyFH1cPowA4ddQGAPsrbcLlddrX+XK9ulWnaKjqisny1LCaKAzrllpvr8bC+Qz96y1qpP4gs75Lu589dNDUyUQA1gu+tsCxkaYy4IjkNfbsfy1ZYW+P7WBsM6khG+vwpb3s6s6tbW78h8qOeR2pT98iWWvfR7zbK23C5d+5pnXLVjjfWvDv2bM0YF2a02d4rIWEciEt37uWRm/Lu4X2qoNn0SPyzEvNSccvZ5DpttkY1KIuY5JXbW8mukMXYX7R917cq4pD3wrRvbLvmDrd3yCLBtke/7rO0w+lbTb5hXO1jxZvuljcthaVYpa8ttWFgXGGv9u0ChLtykOTriZ8vCQigkt7rM/IwolMi+s9emTy8FZ86XFY6ivvkK5lHOnIDhgAH0XIaDtz2uoA/Cd9XV8xVYHiSpdvCmaXer9IONWSmyRllbbisJu0Ky1r8KhVIZS9aRygSSwc7aMvMzIkMIF5SlFn0KenfyDkobmJUrpwTNoS1ssTp6um7lTTB7RsAIGAEjYASMgBEwAkbACFSMgGwOTph9p+sfp+6+23yLbMU418Iap04+l9C9VbYWiZgPI2AEjIARMAJGwAgYASNwIQjIzuDvVixqcbDPyX/t8grmDhQjvFFA6PzP7mSh76DJZtEIGAEjYASMgBEwAkbACBiBMyAgWwM7443sjEXO87CBeQahLVFFMDJvJPiib4AuUbdpGAEjYASMgBEwAkbACBgBI3B5CITVy89lY/y2VOv+H84LF1TGgi7oAAAAAElFTkSuQmCC\n",
"$\\displaystyle {{dst}_{(0,0)}} \\leftarrow \\left(- 0.5 {{img}_{(-1,-1)}^{2}} - {{img}_{(-1,0)}^{2}} w_{2} - 0.5 {{img}_{(-1,1)}^{2}} + 0.5 {{img}_{(1,-1)}^{2}} + {{img}_{(1,0)}^{2}} w_{2} - 0.5 {{img}_{(1,1)}^{2}}\\right)^{2}$"
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
],
"text/plain": [
" \n",
"dst_C := (-0.5⋅img_SW__2 - img_W__2⋅w₂ - 0.5⋅img_NW__2 + 0.5⋅img_SE__2 + img_E\n",
"\n",
" 2\n",
"__2⋅w₂ - 0.5⋅img_NE__2) "
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dst_field = ps.fields('dst: [2D]' )\n",
"update_rule = ps.Assignment(dst_field[0,0], sobel_x)\n",
"update_rule"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next we can see *pystencils* in action which creates a kernel for us."
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"from pystencils import create_kernel\n",
"ast = create_kernel(update_rule, cpu_openmp=False)\n",
"compiled_kernel = ast.compile()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This compiled kernel is now just an ordinary Python function. \n",
"Now lets grab an image to apply this filter to:"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA6IAAAEfCAYAAABbM3sFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XuQXOd53/nfMxcMMAAG1wEwuAMkeLUjUoJlyVI5tGnZkrwVOlkrKznJcr3ccLdKduxNaiPZla1VqnZr5Yod7aUSVTGRYu6WI0uWraXWKztSKDEXK6IIirQoihdAIAgMrgNwMAAGwFzf/QPN9zzd6LfnnOnuMz09308VCk/3vKfP22dO98yZ/p3nWAhBAAAAAACUpWepJwAAAAAAWFk4EAUAAAAAlIoDUQAAAABAqTgQBQAAAACUigNRAAAAAECpOBAFAAAAAJSKA1EAAAAAQKmaOhA1sw+a2WtmdszMPtmqSQEAAAAAupeFEBa3oFmvpNclfUDSqKTnJH0shPDD1k0PAAAAANBt+ppY9t2SjoUQjkuSmf2hpEckJQ9Et27dGvbv39/EKgEAAAAAner555+/GEIYXmhcMweiuySdcrdHJf1kowX279+vI0eONLFKAAAAAECnMrM384xr5hxRq3PfbTlfM3vczI6Y2ZGxsbEmVgcAAAAA6AbNHIiOStrjbu+WdKZ2UAjhiRDC4RDC4eHhBT+hBQAAAAB0uWYORJ+TdMjMDpjZKkkflfTV1kwLAAAAANCtFn2OaAhh1sx+TdK/kdQr6fMhhJdbNjMAAAAAQFdqplmRQghfk/S1Fs0FAAAAALACNBPNBQAAAACgMA5EAQAAAACl4kAUAAAAAFAqDkQBAAAAAKXiQBQAAAAAUCoORAEAAAAApeJAFAAAAABQKg5EAQAAAACl4kAUAAAAAFAqDkQBAAAAAKXiQBQAAAAAUCoORAEAAAAApeJAFAAAAABQKg5EAQAAAACl4kAUAAAAAFAqDkQBAAAAAKXiQBQAAAAAUCoORAEAAAAApepb6gkAAIClMzs7G+u+Pn4tAACUg09EAQAAAACl4kAUAAAAAFAqMjgAACxjPlo7Ojoa67m5uVivXbs21tu3b69a/rXXXov1/fff344pAgBwmwU/ETWzz5vZBTP7gbtvs5l9w8yOVv7f1N5pAgAAAAC6RZ5o7u9L+mDNfZ+U9HQI4ZCkpyu3AQAAAABY0ILR3BDCvzez/TV3PyLpoUr9pKRnJH2ihfPCAq5dux7rk6ezKNZbN+ZjfeHKTFa/NVG1/GW3/OSNqVhPz2QRr7n5EOu+3uxvFqtXZbvN+jUDsd44lEW/RrZsiPXmgSweNrxpY6zvOLBXAIDmjI+Px3r//v2xnp/Pfh7cuHGj7v0SnXIBAEtjsc2KtocQzkpS5f9trZsSAAAAAKCbtb1rrpk9bmZHzOzI2NhYu1cHAAAAAOhwi83jnDezkRDCWTMbkXQhNTCE8ISkJyTp8OHDITUOmevXswjVX7x0LNbfPpbFry6ELPp69vJkrGdms00cgq+ro1ghDLgbq7JyPrW8qzVfd7zCVTf+St1l164+H+udg1mnxp+5u7rf1Yffc0+s169bJwBAfT526zvlTk5O1hsOAEBHWOwnol+V9GilflTSU62ZDgAAAACg2+W5fMsXJP0nSXeb2aiZPSbp05I+YGZHJX2gchsAAAAAgAXl6Zr7scSXHm7xXFa0F149Eevffy47l/ZklnDV3ExvrGenL7qlXWw2Fa1VdSraf02ug6Ifl4zm+jhuavx8/XVPTGXrmpiwWL92cbpqfn/28qVY/8bPH4r1g/ceFAAgY5a9l6bet73U/QAAlKntzYoAAAAAAPA4EAUAAAAAlIqrWC+hV4+fifVnns26G45fchcen5uN9dRM1g1xzsdpXcyqvzeLaLlSqo1iJWK7fliovuEXrjsmGQUOqcd3z+fGtarpHbuZTf4fPXU01p9ykd+fuP8OAQAyRHMBAMsFn4gCAAAAAErFgSgAAAAAoFREc0vmI1F/9P2sM+z4W+Oxnp/PIqszs1n9wL5NsX7XgS2xHruSRXn/7UtZ3HfyZtaJtrfH53Rr41v+/nnV+0IygpuK7xYdX9vV10WPxy9l2+n3vpF1Dv5nI9k22LJ5owAAAFaq69evx3pmZibW/f39sZ6dzU756u3NfqcaGBiIte/E7cc04h+3r4/DC+TDJ6IAAAAAgFJxIAoAAAAAKBWfnZfs3LkLsT72VhZjmJ+t3x33r967Pda/9ciPxbqvp/7fEA4f3Brrf/zl52M9OzdfNa4qqFswUpuK1xYfr/pjbrud1afOX471//Mfvh/rxx75aQFAu8270waOHs06em/evDnWw8PDpc7Jo2susHK98cYbsfbvSdu2bYv12NhYrH0E14/x73M+slsb0z116lSs9+zZs9hpYwXjE1EAAAAAQKk4EAUAAAAAlIpobsnOjV2M9eXJqVj7oJRvcPufv3tvrFNxXO+n7sqiFfftyjrJPvejC1XjVvdl8Yp0pNYt0ExH3KLx3UbLzGbb7NvHs5jur7oYSU+O7QQAtXwc7cyZrAP59HTWgXxoaCjWd999d6yfe+65WC9lNBfAynX//fcvOMa/zx04cCDWr7/+eqzvuuuuWJ8+fTrWu3btqnqswcHBWN+8eTPWq1evzjljrHT8xg4AAAAAKBUHogAAAACAUhHNLdnUjIvjVsVPs6hEcEHd3iZipr2uG9rtyddicdx2d9CtnWByeRcpuTKbXaD52rXJWA8NrRcAFHXlypVY7969O9ZTU9n7to+f+fvzXvS93eiaC2Ax+vrqHxL497kLF6pP8/Kddq9fv96eiaGr8YkoAAAAAKBUHIgCAAAAAErFgSgAAAAAoFScI7qUqs6RzMrZ2ew8yP/ve6diffcvLtyW+wenxmP9w9GsXtVrVePyXWplvuD4Zs4jrX4eedY3Pzsb6zl37igALEbqXNDJycl6wzvmXEt/OQbOEQWwGHNzc7H27ykbNmyIdX9/f9Uy58+fj/X69fTnQHF8IgoAAAAAKBUHogAAAACAUhHNLZtLkKbipwN92d8HvvbCyVhfuzkd6/ceylpmnx3PYmNPHTkR68mpmVj3VSdzq+NbyhGp9cumxvt8sXLEcZVatmaZRuMAAACQS+p3O3/5lomJibr1wYMHq5a5fPlyrDdv3tyqKWIFWfATUTPbY2bfMrNXzOxlM/uNyv2bzewbZna08v+m9k8XAAAAALDc5Ynmzkr6ByGEeyW9R9LHzew+SZ+U9HQI4ZCkpyu3AQAAAABoaMFobgjhrKSzlfqqmb0iaZekRyQ9VBn2pKRnJH2iLbPsUnliqj0uUvtvXzod66//ZdZN1z9Ov1vAJXxvi2Lki9cm5poaXzSCm+qM22h+OeYKAM1art1nl+u8AbTPm2++GevBwcG6Y3zXcF/PuisUvPDCC1XL3HnnnbG+ePFirEdGRhY/WawohZoVmdl+SQ9KelbS9spB6tsHq9sSyzxuZkfM7MjY2FhzswUAAAAALHu5D0TNbJ2kP5b0myGEK3mXCyE8EUI4HEI4PDw8vJg5AgAAAAC6SK6uuWbWr1sHoX8QQviTyt3nzWwkhHDWzEYkXWjXJLuKuaxtKkKViE35brohmKurWvHWfczbormp9eVZvuD41LKN57fwXKueNwC00HKNuC7XeQNon3379i045p577ql7/44dO3KtY/369YXmBEj5uuaapM9JeiWE8E/dl74q6dFK/aikp1o/PQAAAABAt8nziej7JP0dSS+Z2YuV+35b0qclfcnMHpN0UtJH2jNFAAAAAEA3ydM19z9KssSXH27tdLpfb29vrFe7zmX9vXkirj6C6x60aDxWkuZT3Wez+sb1G7GenZlJrLoN8d2cy/vnAAAAAGD5KNQ1FwAAAACAZnEgCgAAAAAoVa6uuWidn3jwr8T694ZPx7rXUunnVskbY83m8U++/O1YvzC2KtbzM9mFjot2xM0V5W24jBvjnlOYp4PuSnT16tVY+wtw9/Vlb21r1qyJ9cDAQDkTWyJ+G3T7c22Hnp76f5vN02XW73NLia65y9f169fr1v77tXr16ljTpbS41DaWqrezf/8cGhpq/8SAFYpPRAEAAAAApeJAFAAAAABQqs7IEnWgS2+9FetTZ87H+ubNm9mgRcSbrCeLvq7q71/c5Fou1C2np2fdGPc3i2Y64ubphnvb8v4L9TsH+1jcpUtjsT516lisey3H7u5W1lMTtRvZsSvWm7duX/ixkMvExETd+saNrGvzjOvafOedd8baRykHXRfqlAsXLlTdHh8fj7WP8O7du3fBxyrbpUuXYv2We3/y+765iP/+/ftLmVcR/nV98eLFWPtIsee/v9PT07FezHPz32u/b/k5rVqVnYJQG9urx49Zu3ZtrE+fzk67aBSD9c/P73+bNm1acN2dwm/X8+ezn5Xr1q2L9bVr12I9706j8M/fxx9rY87btm1rzWSX0BtvvBFrvy9v3Lixbp16P/Od9/32rn1v89tzx44dse62yP7Jkydj7d//xsay3wN27cp+dufZxlL1fup/7zt16lTd8X4deX4WAbiFT0QBAAAAAKXiQBQAAAAAUKoVH8098sPjsf7ai1mc6tRs1o3u4uUsxjWbO1o6X/9rfpn5PLHWHI9TcHzj9WX13Ez2d4owd9ONqf+weeK4ueK7DVaSetzBwSzWdunMkVg/8I5nsvGTWRxqUXqzSM/pN7Ko0+qhX4j1li07hPpOnDgRax972rlzZ6w3b95cd9m5ublY+/huUT7WJlXHqfzXfIxu69atsW53l8rJycmq2z5ul4rX+S6ar7zyShtn1zz/+vXbtfZ5v83HXZ999tlYLyaa6+Ohu3fvrrtuH8Hz+1yKH+OfT+1+lpKK8zYTzc3TNbfRMp6PxI+OjsbaR6n998JvV8/HIfOo7V7sX4/+sToxwuy3k//++tev32/8Pnf58uVC6/L72YEDB5Jfu3LlSqz9+6c/zaET+desj/L797zh4eFY++3q941mtnEtHxP329jH+v3Puk48RQLoJHwiCgAAAAAoFQeiAAAAAIBSrZhoro8S/YuvvxTrZ0azSNL0TBazmJvKulIWjZzetoxv7zpfPzqbGu/ju8oxJlR1lU3M4bZlqtrSJsao7viqx01tGyXqRtHhxLjqdSfmNJ91zquK407OqCkhi0nu2prtH9NTWaRu9OTfjPXuvZ0de2oH30HTd3mVqiO4vmtkKirl41c+AuU7EvouiV5VxDwRg5Oqo1+ej3v5eKLvUrl9e+s7J9d2at2zZ0+sfTTN8881tT06kY/Epr4P/rnNzs7WHZOXj4On1rGYWGsrlm2lPPOo3ZY+cu5jhb7zrd/f/evXv+Z9t1v/+vWKxp+l6tejX3e7X495HT+eneLjO277bZM6pcBvp6Idbf32S72GpOr3T/8+fPXq1Vj7aGnZnXX999THsA8ePBjrLVu2xNrvQ/45+M7Tnt/Gqa7NUr6fG77jtue3/8jISKxfein7ffPHf/zH6y4LrGR8IgoAAAAAKBUHogAAAACAUnV1NNfHj/7Pb2Zxj784mUUzZm5k8bBk5DQRP01FTm+77eO4qZhqKuKaGj+fXnfd8Q2ir0rFYAvOtXgEt8H2axArLk2ojfK529eyfWtVfxb7Hl77lVhPT/+9bMyq7rqIuHfu3LlY+663tTFRH01LRW37+/tjfebMmVj7/cFHq3yk0K/PR1x9zKy2K6+Pdfkolr/fL++jhz6ulYohNqs2SozF89HDV199NdZ+f/KdNv33OhXr9dE+f6F7f3+jmK5/HRTtLNuM2i7FGzZsiLWfr48h+uih39+Hhobqjnn99ddj7bef71TtX79+2dr3jtTr0W9nH4Mto5uuf3779u2L9djYWN3x/nvtI88+iurn7U8n8qcH+P3Sf698V16p+nvsfxfy78N+W6Zi0u2K6fqfG/5930eH/ekIqe3nn48/HcQ/Z7+f+feB2teB3wZ++/uord9P/Xi/z771Vnbqzl133RVrH+H2sWNgJeMTUQAAAABAqTgQBQAAAACUqqujuX/0F1l05j8ez+IUsz6OmydymoqfNuj6moysJrrPJteXYx55lm04v6LLJ8er7v2F19Vgfe3h11W/6/At8/XHTWXjBoayDrpnRp+O9c6DH252kh3FR498N8NUZ1epOlrlo3qnT2fbzHeJveOOO5qeZ61GFzP380tFtHwk7OzZs7GuvZh8q+TpgLqUHVqbUfZz8/E6X3s+Vunjp6mOpL5Lp5/r/fffv+h5NivPdm0UffXWrl0bax9j9DFYP8Z3rk11sfUdUn2c2Ud2/ePXSr0eL1zIupq3I5rr36ek6u64/v3Q8zHQVIfbVu0rPuoqVUd4/Xub3/5+W/q5+lMCWhXNPXnyZNVt//32kVq/bfy8/b7sX6c+Ft0uftv6n11+G6eizX7f2L17d6yvXLkSax9vB1YaPhEFAAAAAJSKA1EAAAAAQKm6Lpo7eia7wPWfHc3iJdVxXKeZCGmDCFQqstqq9RWN496efF3882vV/BpFh9seN6zqiJuK49Z0yqyab2L5a1k8Z13fs7Gemno41mVfLLwdfEfC1AW+a/moo4+13nvvva2b2AJqO5P6SJiPWfoIr48x+gjjtm3bYn3ixIlY79+/vxVTxRLw8bo870F+jH9NdLra55bq3uvjlD6K2sx7mI+A+vi97x7r4/5SuqOufz36KLCP6frXaVH+fWB4eLjqa/40BD+nVMTfP+92dEiu7Zrr47WpuGvqFATfxfbNN9+MdTMx2Nroqo96p2Kt/meG395ld5z129bHdH0s3XfvrY2+v81/T3xkl2guVjI+EQUAAAAAlGrBA1EzW21m3zWzvzSzl83sH1fuP2Bmz5rZUTP7opmtWuixAAAAAADI84nolKSfDSG8Q9IDkj5oZu+R9DuSPhNCOCRpXNJj7ZsmAAAAAKBbLHiOaLh1MsnbJxj0V/4FST8r6Vcq9z8p6VOSPtv6KRbz9ReOx/rKzew4O3VeaOqSI02dm9lg+VyXZmniXND0c6s+37Ed53a26jzSvNKXfKi65crUeaF5zxHNcV7pbHb/0FB2ntLYpaOxHt75Y/WmvWzluVxE7ddS59CUzZ+LNjo6GuvBwcFY+/N6PH9OVWpMs/ylAvJc4qQbLuWS5/4yLKdL5+S+LFaFP09Qqr4Mhd+XDx061KopLshfAqn2MlCp8xo9f3/e89YX4s/j86/FWn47+/MG/WVomjlXdTFS51f681P9JUQ8f06pv9TR9evXY+3fI/No3Edj4deXv+zMUvLni7722mux9ucQp34e+OeT2o+BlSbXOaJm1mtmL0q6IOkbkn4k6XII4e3uDKOSdiWWfdzMjpjZEX/tJwAAAADAypTrQDSEMBdCeEDSbknvllSvzWXdP2mFEJ4IIRwOIRyu7ToHAAAAAFh5Cl2+JYRw2cyekfQeSRvNrK/yqehuSWfaML+884r1C+dmYj03vUSR04bLz9cb0uSlWQrOdRHLF4/vFlvXYvT3Z7uvj5bNzGRt4atjtz4Kk4jWVsVva7dZjmiuHzOX7Ys3xl/M7iea2zGRRm/dunWx9vtTKubn79+9e3esffKj2T++Lad4aDPyPLdG0ch2WK7bPs+8fWxTqr4Mit+Xl4qPtErVsVYfG/X8c/XLF73kiL+kk3/9pmKsUnV0uNO2pVQ9j2PHjsV68+bNsc7zPuejyj5KnUft67fo66tTTufw/M8Jvw/keT7L6XJPQDvl6Zo7bGYbK/UaST8n6RVJ35L0y5Vhj0p6ql2TBAAAAAB0jzyfiI5IetLMenXrwPVLIYQ/NbMfSvpDM/ufJb0g6XNtnCcAAAAAoEvk6Zr7fUkP1rn/uG6dL7rkLk9kkZmz17MPeefnsq6Wqe647egY23j5qkGF1tGqOO3tXyqvI26zUTaz7Pu7ZbW5+11sZ+5cVs+6OG6errnJLrt5x7n6RrbuTUMnhc7mu0meO5ftQz097j0lEQ/1MSsfX+O8eHSi2vfhVNx1qaxZs6bqdtFYdjNdrH2sd+vWrbmW8VFnH83tRP5779/bUnynXP88/fckz+N0o2Z+t1mp2wyoxSsBAAAAAFAqDkQBAAAAAKUq1DW3U427COT41azD20BfdpydL3KqBcfnjZw2tXwzHXHzRIIlBRWcn3KsLzGmlZ0le1YNxPqh+7ILS/t17N13OVvgchbPLtwptzaam4rzVj0/d/9sVq/fkHVivHolm9/6oSwOulwtpmtup/Odb/fs2RPrPBHGVsYci3aWXE7buNO70nb6/FIWM+9O60i6YcOGqts+Btru18Hg4GCsfcfYRo/p5+c7qXaivXv3xnp6ejrWqec3N5f9frV+/fpYnzmTXShhMd2Bl+vry/Pf66L7aNldwIFOxSeiAAAAAIBScSAKAAAAAChVZ2dIcrrorsNcHYkoGDlNjU+MScZVa9adjKwqEd/INX7xc5Uk+RhJnmUS27Vq/PzCz20xfKfcg1uzbor/xQcOx3r0+HdivWfrqJtqE51yb4vm5uiUm4r8TmVRz7NXTsWaaG5n8hd6zxO58p0lt23bVnf8YuKP3RBfSykaZSvbct32y3XeXm9vb9VtHw/N85yKvtZ8p9t169bFemJiItfy/f39sfadZTvRwEB2esvrr78e65GRkVj7SLLnvw9TU1N1x+TVDfup123PBygLn4gCAAAAAErFgSgAAAAAoFRdEc29cHky1snOsnkip0U7wKZiwDnnkas7btF4cY5uvbcvU3/ehbv3JqO8xfk47rZtw7H+H3/5gVjPz2cxoS1rv5ktfMNFhkI2pqlobaNxubrpzsRqTc+40Nl859s1a9Y0GHmLj6xt3JjFrf3j+I6TADrHxYsXYz00NJRrGR8fvnLlSqx37drVuom1mY/H18ahiywLAIvFJ6IAAAAAgFJxIAoAAAAAKFVXRHPHr9e/KHOeSG16vOren2fZRsvkWj413nWllesK2NO3yg2vHw2dr72AecHYrY+c5lm2KB/FlaR37tsU6//hb7wr1of27Yz19Fufi/Vgb3ZxbU35OG6e2GyObrq3LZ+j624iytunMS13qY6nebvmdnr3QN91s+i8Z2ayGPbNmzdj3Ww0t9s6MRbtMlnG8yy6X3fKtm923p3yPFKKPqeisdHJyez0Hh/NbbRdfHfc73//+7FeTtFcf9pB0S7WvlP4YnTi678Zy+n9AugkfCIKAAAAACgVB6IAAAAAgFJ1RTT35vRsdqOJSGwzcdrbIhdNRF/93wd6+rJv0baNg7EeXuO63U1mHf8WEylMdxGuW1bNNU/QxD/kQH/2fEaGN8f6oQcOVS3z3gfvjvX161lHwumLT8R6VfjLbIGpLA7ZTGw2OaZ2XDLy2yDaW3Fj8q2696NzrFrl4+7F4lQ+4tbsRd8BtJ/vep2Xf1/o61uev0r19Cz+s4jFbDMAqMUnogAAAACAUnEgCgAAAAAo1fLMk9SYc91kfcw0TyS2mW66yRhwznX4GGdPf9aB7/4da2P9S+/YGuv3u7jq4GDW7a4bXJm4WHV77NSfxXp447PZF2bOZfWsjwY1EZvNE9ltdnl399xMc90GO81iuuYuJ810bpydnV140CLmkbq/G7ZxnvvLsFy7YC7XeefVjufUTJdsqTtiqkX3G7/Nylhfp+u2LsBAWfhEFAAAAABQKg5EAQAAAACl6opobp5YTXMdcd3KQr4Lh6cjv9nyq9ZkF7j/6I9lHXH/7t94SPWcfOM7sZ669kqsZ25kXWVDrj62bVK16ux5+gTP/FzW3fbQvuzvIENDl6sfa3AiqyemEytpUew2OWYRXXNT667eidRNujGa66N2ReNUvmtuM10p8657OW3XlDzPzW/XMizXbb9c591Iu5/TwMBAoXVJ0vXr2SkWBw4cWPS6l9LMTPbzuOg27u/vb2rd3bifvq3bng/QTrl/SzKzXjN7wcz+tHL7gJk9a2ZHzeyLZrZqoccAAAAAAKDIn+t/Q9Ir7vbvSPpMCOGQpHFJj7VyYgAAAACA7pQrmmtmuyX9oqT/RdLft1tZ2J+V9CuVIU9K+pSkz7Zhjgta0++Op5vqiLv4+O7tHVbrj+tzEaD/7qe2xPojP/eTsT598vlYDw9+M9Z7d7j46ly5MbWk4LoFFo2u3nCR28u1XQcLRmebis3mifXmXX7hOG5f32p1k7xxo+UUS5qamor1+vXrG4y8nT9VYPXq5r7XebbZctquXqc/t06fX8pynXcjeWLZzTynoaGhwo/jO2Jv3Lgx1j7W39vbu+g5leHGjRuxLrrfDA4ONhi5sG7bT7vt+QBlyfuJ6P8m6R8q+y17i6TLIYS334lHJe1q8dwAAAAAAF1owQNRM/vPJF0IITzv764ztO6feszscTM7YmZHxsbGFjlNAAAAAEC3yBPNfZ+kv2ZmH5a0WtKQbn1CutHM+iqfiu6WdKbewiGEJyQ9IUmHDx9uSy5hw2DWvS0Zx1WizjM+T3e3muNwP66nL5vfh+7aEOuqOO6J/xDrXXuezh5ofDKrryxlR9w88dMWxWabXb5wbDbPvJtcd8j+5rN6cKu6STd2zfWR2qJdc32nXB/5W4xu7izp45ad+NyW67ZfrvNupN3PafPmzbH23XAXE9MdHx+P9datnf1e79+rUp3CPX+/P31hMbptP+225wOUZcFPREMIvxVC2B1C2C/po5K+GUL4W5K+JemXK8MelfRU22YJAAAAAOgazVzk7hO61bjomG6dM/q51kwJAAAAANDNcnXNfVsI4RlJz1Tq45Le3fopAQAAAAC6WaED0U61bePaWFfl9HOcC6oc547Wnv9Zd0xN9t/fHt64LtZ/9xffFeuzo8djvWvPv8sWvnit7vrKkbp8Seo8yDznbybGp8bkfdy2X7KlwZwKn3vq9pX+nVruFnMOzHI6P8af8+WlnoO/TMPVq1djvX///qbmUfS8o+W0jTv9nKrluu07fbsuRtHnlOdyL96Au6zaK69kl0vftm1brG/evJlc3p9fOTExEetOPEfUb5t9+/bF2p/bmuLf54aHhxe9Xqk799O3ddvzAdqpmWguAAAAAAAVii0ZAAAbzklEQVSFcSAKAAAAAChVV0Rzh1e74+lU3CNxfzIekmvZ9KU+/CVb3r0z28ybNmSXczh97gvZAteWMI5bNKbaVEQ1x5jlPKfUY/Wsc/Xyj+Z2u8nJ7LJJ69atazDyFh/tO3v2bKybjeYWNT09Xer6kCF21x38JZf85U3ySsX6O8XFixdjnSfC7OO4MzMzsR4ZGWntxACsSHwiCgAAAAAoFQeiAAAAAIBSdUU0d9Ngdjy9ad3qWF+/MRXrZEfcFsV3a1NZZhbr9x7aHutrV6/Eetfet7IFrrQ7zlMzwU7rSlu7AdsRr21m3ouZU092/5XrWYxp+x171E3ydg7t9Oii73a7d+/eWF++fHnBZX2Eb8uWLYueg3/fkKq7caa2n+/muWPHjkWveyl1SpdJ/30s2tVzzZo17ZtYAd3cjVRq/3PavHlzrH3UvdHj+9fg4OBgrP3r10dcl9I1dxqQn2vq+fkxly5dinWz0dxu20+77fkAZeETUQAAAABAqTgQBQAAAACUqiuiuZs3bYz1jsEsGnl8Kou5hblUh9VmOuiq/nhVH+GPbMoiWxfOj8Z63Y4raq9UJLb2dgd0pa2dXzsiv8kxeR5TOefuxqzO9r/LEw/EeqhDIlpLqVNiap6P4NZGZOvxMc4bN27Eupl47Pr166tu+7iwf4/x8/NdOn3HzwsXLsR627Zti55TK/ltlmcbl81HLH0n5DyaiWSjc2zcmP0+8eqrr8a6tnv21FR26k/qNXj8+PFYHzp0qKXzLCL13uHft7zUe9u+ffvaMDsAKxmfiAIAAAAASsWBKAAAAACgVF0RzfVRkwdHsjjVG1fdcfbs9VgW74hbML4rqcelznp7s808fWNGbVVGV9q2x2YXs+52z7vB46aeh63Kyg0/rW6Vt2uu7yA5OTnZ1jnlNTY2FuvVq7OO2xMTEwsu67tJnj9/PtbNxNdq46A+Guijnz5C6vnt2ildXD0ff56Zyd4L83SZLKPjpN9+q1Zlr9888/Mx6rK7F+f6GZUYv9yU+ZyGh4dj7eOqUr7XYF9f9rPfR1zLfm0ePXo01j7+n3of9u9t/jXbynl3237abc8HKAufiAIAAAAASsWBKAAAAACgVF0RzfV+5h1ZLO5Pf/SjWF8v3BG3aHw33WE1+LhnyxpFNhNRbbR8J3TTbTAu15xaFdldxJx6svrG/P2x3rXvbnWrvPFJH03zXVxfe+21WG/atKnumFbxnWQl6fr1LLI/P599T1PPw3f79V0z77333lZNscqGDRti3d/fH+tUt0vfvdPP7/XXX4/1nj17Yt2uiOC1a9di/eabb8Z6+/btdceklB1l89vGRy9T8/BjfJR3KXVjRHCpnpOPwx87dqzqaz6+6iOu/jXo9wkf9/fvI+3ab0ZHsw79mzdvjvX4+Hjd8al53H13e352ddt+2m3PBygLn4gCAAAAAErFgSgAAAAAoFRdF82999AdsX7/nVkE5et/6brD+Qie6scpqiMUeeK71fNoSwSjcPQ1bwfYotHZZrrS5njM3Otu1byb3WauXpe9pC5O/VKs9/TwNx/PxzJ9PNTHY1966aVY+9iYr/3F4/1r7sqVK3XXW3tRet/J19e+E7d/XB+V9fFYH5ttJd+B18eK/fqmp6dj7efto7lr166NtY/s+efmO3z68f5+qfp5p6LAPmLtu3S+9dZbdefaKfz+5Dsh54lh+m125MiRWN93331V6/CPheXjzjvvrLrto7r+fcF3mfWvCf9aO3fuXN117Ny5M9a1r7t6/D5aG3X376v+def591IfF/avWQBoJ347BgAAAACUigNRAAAAAECpui6a6/3t9+yO9Utns+6Yp89kcZaqaK7qxy3DfP0x6WWbjeYmuvq2Kn5au0zLIr9FY7OJWG/ex21Zl97FzMnpz/6eM2M/Getdd/zV+uO7TN6uud7q1avr3u87S/q4m7+YvI90+liqX7ePnPm4r4/NNeLX5+fhu6Tu3r1b7eaf68aNG2Ptn5OP6aYuUO/v9xG8gYGBuuN95NSvq3ZOPj7ot5nvzOnH+Fiqjy36WLS3mH2rVUZGRmLto41+3/L7n9/GvuNzbWTy6NGjsfavg+Hh4Vj7LqdFdWP3zqLPqXafbYc77shOA/IxXR9r9V25/f7uXxP+Nej3sxMnTtR9nL1798bax29rTw9IdaX2EXLPz7uM+Hi37adFn89yem5AO+U6EDWzE5KuSpqTNBtCOGxmmyV9UdJ+SSck/c0QQv2+4AAAAAAAVBSJ5v5MCOGBEMLhyu1PSno6hHBI0tOV2wAAAAAANNRMNPcRSQ9V6iclPSPpE03Op6X27toR63/4gSwW87/+eRbbOX8x+xB3btp1uEtFcKuioakI7SJiF3m6z+aKqOZYtuHyBTvitiM2m3tcni69LdqWtQazeON0yDqbTqz69VgP0ym3io90pmJj/gLyMzMzsfaR2FR32zxqX5c+puoja37dPua3a9euQutrJR/h27p1a6x9hM93ffVRwNT285G/vPw29NFSvy39PHxkNRUR9rHeVKzSjy+D77DsI7h+W/rviR/jOwv7WqqOWPs4pI+lNxPNzROrrB1z9erVRa+vHWr3Ab+f+di4559TGfuKf+85dOhQrF999dVY+/0jz2vC19u3b4+1fz5+//PdwWufs98eqfj+nj176o4pQ9H9tNP2Uan6vdDHpFO//6W6bwMrWd7flIOkr5vZ82b2eOW+7SGEs5JU+X9bcmkAAAAAACryfiL6vhDCGTPbJukbZvbqgktUVA5cH5eqT7IHAAAAAKxMuQ5EQwhnKv9fMLOvSHq3pPNmNhJCOGtmI5IuJJZ9QtITknT48OElaxP24N1ZfPJ312Uxn//7my/F+nvns9jEhfEsNpHsdOZinPM1UYxZy2Iu83OJDn5NRVybiKjmXXePqwd8BNJ9kF7VaHi+iTG18/O33bqDn0dI3O/HFxzTKCTQl8XlTo2/M9aDO/+bWA9vHdFKkHpNNIqk++iSj7X5C8VfuJC9jfj4ru9U6iO0qZheSm38zEdwfUddH7XLc2H5svnn4efqY7o+Euqjnn6bpWLOvu6piZj7dZ88eTLWvruwjwn676/3ne98J9Y+8uzjwn5/qp1HmVJR2ePHj8fa7687dmSnhfh9TKqOnfrt7Pfxovz2fv3112Od6kZc+zpYysh5PbXz89vZx1H99vPboOwYt3fPPffE2sdJ33zzzVj714p/rv61mXpf9XFfv2xtzN5HP/3+e/DgwRzPovVqvydF99NO20el6vj+j370o1j7mL7nt0Ez8Xugmyz4k93M1prZ+rdrST8v6QeSvirp0cqwRyU91a5JAgAAAAC6R54/9W+X9JXKXx77JP3rEMKfm9lzkr5kZo9JOinpI+2bJgAAAACgW1iZF9U9fPhwOHLkSGnrK+r8+YuxPjl6OtY3XTfdvMzFyN71V+6P9fFjP4j1/fu+lC0w6dbRjk65ebvSrs6iTqPjD8d6fOo+dRofcQvzMw1GxlGFHr+3rzoetn3H7lhv2767dviKcubMmVj7OFmjLqy+Y6Af56NseYyNjcX64sXsNVvbnbTeeoeHh6u+5rv0djMfD/Xx59Q2811KfRRakjZt2tSSOX3729+O9e7d2evJ7xv+e+djwO9///tbMod28a+JS5cuVX3Nx/Z83NhH9XyMHd3NR439vuK74/rf03yE278WV8p7GYDlwcyed5f8TOL6EgAAAACAUnEgCgAAAAAoFQeiAAAAAIBSdd51CZbQ9u1b69atNF91audcok6cv9nMJVtqzxFNnnuanSPat2oo1juH97vhicvRlMGtu7fPnyvD+TErhT/Ps/acT9TXiZdBqL2syUL8eaudzl/yZ/v27Us4E3S6oaGhujUArAR8IgoAAAAAKBUHogAAAACAUhHNXUqpSG3hS7MUHHPb11x9PRu3o/ePs/tn/t8c60itL0+MOG902N0/NBLLa1d/J9br1m8QyuMvLdDoclBlXioKnc9fhmJuLjs1IbU/LadoLgAAWBifiAIAAAAASsWBKAAAAACgVERzl5TvlFs07tpMN90G4/zjzs5m9cxkYt055pRr3jXzyxM37smiemEDsc+lQjQXefl9YP/+/bEeHx9fcDwdRQEA6C58IgoAAAAAKBUHogAAAACAUhHNXUpV8dU5/4X6Y5rqlFsbfW1Hl95ULPime5jZ+mNk1fOz/sS6XT3P31GA5eTSpUuxnvXR/wQfzc0zHgAALB/8Jg8AAAAAKBUHogAAAACAUhHNLZ2Pr/o4bqrjbBtis4tavuCc5l0cd/VdWb3hF+ove/lr1fO7/nJW2yqhc9E1F3lNTEzEure3N9apfWPVquy1T9dcAAC6C5+IAgAAAABKxYEoAAAAAKBURHOXUiqC21Q0dxFdc5PdbvOs290/P5XVAwezeu/vZnXvBtW14QPVt9/4eFbfPJrVxHSBZaunJ/vb540bN+qOGRgYiPXY2Fisd+3a1b6JAQCA0vGJKAAAAACgVByIAgAAAABKRTS3ZGaW3aiKwc7Vv79VsdnQKJqbI86bJ/Lro7lDD2d1Ko7r9W6svu276954Navd5lN/9ncU6+FvKkuFrrlo5Lvf/W6st27dGuu5ubl6w9Xf3193PAAA6C65fns3s41m9mUze9XMXjGz95rZZjP7hpkdrfy/qd2TBQAAAAAsf3k/RvrfJf15COEeSe+Q9IqkT0p6OoRwSNLTldsAAAAAADS0YDTXzIYk/bSk/0qSQgjTkqbN7BFJD1WGPSnpGUmfaMcku8mWrduyGz2uA2xwHSTbEZutjeY2FflNrK/qcWbUlFA/tqfeLJt75eq6WK/bsa7eaJSAaC4k6cKFC7G+efNmrH28dnJysu6ya9eurTvmvvvua+UUAQBAB8nziehBSWOS/pWZvWBm/9LM1kraHkI4K0mV/7c1ehAAAAAAAKR8B6J9kt4p6bMhhAclTapADNfMHjezI2Z2xF8TDgAAAACwMuXpmjsqaTSE8Gzl9pd160D0vJmNhBDOmtmIpAv1Fg4hPCHpCUk6fPjwis/mbd+xJ9ZTYwdjPdDzfDZoLhW7bVFsttG4ZiK/viPw5T/L6o2/mNX9iQ/OZ85X355wy5vbTQd7Y3nl2k/FeoiuuUBb1P4B8erVq7H2MdqhoaFYX7t2Ldap7rg+jrtqVXaawp49e+oNBwAAXWbB395DCOcknTKzuyt3PSzph5K+KunRyn2PSnqqLTMEAAAAAHSVvNcR/XVJf2BmqyQdl/SrunUQ+yUze0zSSUkfac8UAQAAAADdJNeBaAjhRUmH63zp4dZOp/v1uAjpNXsk1gNDr2eDLr3llmhVp9yaVHTRyG+uWLDbnabeyOoTv57VG35edU18vfr2Tbf86jWxnJ49EOvNe/96/cdCqeiau7ycO3cu1r7T7cTERKx9p1sfoZWk+fnsNe8jtX55b2BgoO54H9nduXNnrHuI2QMAsCLwEx8AAAAAUCoORAEAAAAApcp7jijaYMu2Q7E+f+pXY719y+ezQeMXs3o21R23YDddqUFH3aKR3wTL4niaOpHV5/95YoGaXXH9YCyn5/fHeqzvt2O9a92QsPQGB7Pv1c2bN2Od6paKpXXmzJlYDw8Pxzr1fRwfH08+Vm9v1sXaL+/vv3z5cqzXrMli9gcOZDF7AACw8vCJKAAAAACgVByIAgAAAABKRTS3Q2zf895Ynx7NOlYOD3wx1qvWPJ8tMO3isTcKRmul5jrlFmX99esB93eQgSzWJ0lnrmYNmdfu+q9jvWvDlsXPAy0zNJTFok+dOhVrH8n0MUxJWr16dayvXLnSxtmhkfXr18faf798V2Pf6baW73x7/fr1WM/MzMTax3QffPDBxU8WAAB0LT4RBQAAAACUigNRAAAAAECpOBAFAAAAAJSKc0Q70K7dh9ytfxSrM28+F+u5ia/Hes/2Y9nwqbNuWXde51zNOZ7J80pzXJrF67WsHsjxd43V2SUbzo5n547ND/xC1bBd991TbB4o1bp162J977331h1z/Pjxqtv+vFB/DiHKtXHjxliPjo7Guqcne/3680j9pVyk6vOD9+3b144pAgCAFYBPRAEAAAAApeJAFAAAAABQKqK5y8jOfT/hbmX15bcuxvrqtVdjfWPi+7Gev/py1WPds/dqdmP6clbPT7lRPqabXeZBfVksc2Iyu0THG6PbY71pJIvdzvbflz2HHVnkdmSk+vIe6C4HDx5c6imgjuHh4bo1AABAmfhEFAAAAABQKg5EAQAAAAClIprbBTZu3urq97uvvP/2wfWE2ayen6s/xtzfLCzrlLvBsl3ogXxrAwAAALDC8YkoAAAAAKBUHIgCAAAAAEpFNBeSi9eql10CAAAAQHvxiSgAAAAAoFQciAIAAAAASsWBKAAAAACgVAseiJrZ3Wb2ovt3xcx+08w2m9k3zOxo5f9NZUwYAAAAALC8LXggGkJ4LYTwQAjhAUnvknRd0lckfVLS0yGEQ5KertwGAAAAAKChoi1SH5b0oxDCm2b2iKSHKvc/KekZSZ9o3dQgSSGElowpm5m1ZAwAAACA7lP0HNGPSvpCpd4eQjgrSZX/t9VbwMweN7MjZnZkbGxs8TMFAAAAAHSF3AeiZrZK0l+T9EdFVhBCeCKEcDiEcHh4eLjo/AAAAAAAXaZINPdDkr4XQjhfuX3ezEZCCGfNbETShdZPr/OkYrC19/vb8/Pzde8vOqaZupHUuKLx2lbVktTT07PguDxjUnMFAAAAsHSKRHM/piyWK0lflfRopX5U0lOtmhQAAAAAoHvlOhA1s0FJH5D0J+7uT0v6gJkdrXzt062fHgAAAACg2+SK5oYQrkvaUnPfJd3qorus5YnKFq0bfW1ubq4l62gm1lvv9kKKxmtTsVl/f6pu9LXe3t5Cj1W0zhPxBQAAANCcol1zAQAAAABoCgeiAAAAAIBSFemau6wVjb6mIrT+/lSdd1zRumjENxXfrVW0a27R2G0qTuvv93Wjr7WqLhr3XehrAAAAAPLjt2kAAAAAQKk4EAUAAAAAlKqro7ntiN36enZ2tu79tV9Ljcszpui6F9PVN080t2j3WR937evrq3t/o2iuXya1fNEx/jn7Mf75p+5vhJguAAAAUAy/QQMAAAAASsWBKAAAAACgVF0dzW2HVFwzb4wz77h641P1Ysbneawy5pFH0fkVXRYAAABAufhEFAAAAABQKg5EAQAAAACl6upobp5upr4zbJ7aP6bvVlvb9dV3tU11cS3apTdP599UN9zarrn+a/755Rnjt0Gezrr++afur91+ebrrFu3Mm2fdqeew0NcAAAAA5Mdv0wAAAACAUnEgCgAAAAAoFQeiAAAAAIBSdfU5ol7q/L7UpUVS513mqaV853DmGVP0/M/FXL4lj2bOpc1zHmmj8zHznMOZZ0yeOvV8AAAAALQOn4gCAAAAAErFgSgAAAAAoFQrJpqbkida6jWKu3rNxGiLRm3zxnFTUuPyRFOLRnbzbu9mIr95HgcAAADA0uETUQAAAABAqTgQBQAAAACUasVHc4vKG/VMRUXzyBOpLdr1tuj4RopGXItGfAEAAAB0t1xHS2b235vZy2b2AzP7gpmtNrMDZvasmR01sy+a2ap2TxYAAAAAsPwteCBqZrsk/T1Jh0MIPyapV9JHJf2OpM+EEA5JGpf0WDsnCgAAAADoDnmjuX2S1pjZjKRBSWcl/aykX6l8/UlJn5L02VZPcCUiygoAAACgmy34iWgI4bSk35V0UrcOQCckPS/pcghhtjJsVNKuesub2eNmdsTMjoyNjbVm1gAAAACAZStPNHeTpEckHZC0U9JaSR+qM7RuN5wQwhMhhMMhhMPDw8PNzBUAAAAA0AXyNCv6OUlvhBDGQggzkv5E0k9J2mhmb0d7d0s606Y5AgAAAAC6SJ4D0ZOS3mNmg3brxMSHJf1Q0rck/XJlzKOSnmrPFAEAAAAA3STPOaLPSvqypO9JeqmyzBOSPiHp75vZMUlbJH2ujfMEAAAAAHQJC6HuqZ3tWZnZmKRJSRdLWylWqq1iP0P7sZ+hDOxnKAP7GcrAfrYy7AshLNgcqNQDUUkysyMhhMOlrhQrDvsZysB+hjKwn6EM7GcoA/sZvDzniAIAAAAA0DIciAIAAAAASrUUB6JPLME6sfKwn6EM7GcoA/sZysB+hjKwnyEq/RxRAAAAAMDKRjQXAAAAAFCqUg9EzeyDZvaamR0zs0+WuW50NzM7YWYvmdmLZnakct9mM/uGmR2t/L9pqeeJ5cXMPm9mF8zsB+6+uvuV3fJ/VN7fvm9m71y6mWM5SexnnzKz05X3tBfN7MPua79V2c9eM7NfWJpZYzkxsz1m9i0ze8XMXjaz36jcz/sZWqbBfsb7Geoq7UDUzHol/TNJH5J0n6SPmdl9Za0fK8LPhBAecG3BPynp6RDCIUlPV24DRfy+pA/W3Jfarz4k6VDl3+OSPlvSHLH8/b5u388k6TOV97QHQghfk6TKz82PSrq/ssw/r/x8BRqZlfQPQgj3SnqPpI9X9iXez9BKqf1M4v0MdZT5iei7JR0LIRwPIUxL+kNJj5S4fqw8j0h6slI/KemXlnAuWIZCCP9e0ls1d6f2q0ck/V/hlu9I2mhmI+XMFMtZYj9LeUTSH4YQpkIIb0g6pls/X4GkEMLZEML3KvVVSa9I2iXez9BCDfazFN7PVrgyD0R3STrlbo+q8c4JFBEkfd3Mnjezxyv3bQ8hnJVuvTlK2rZks0M3Se1XvMeh1X6tEov8vDu1gP0MTTGz/ZIelPSseD9Dm9TsZxLvZ6ijzANRq3MfLXvRKu8LIbxTt+JEHzezn17qCWHF4T0OrfRZSXdIekDSWUm/V7mf/QyLZmbrJP2xpN8MIVxpNLTOfexnyKXOfsb7Geoq80B0VNIed3u3pDMlrh9dLIRwpvL/BUlf0a1ox/m3o0SV/y8s3QzRRVL7Fe9xaJkQwvkQwlwIYV7Sv1AWV2M/w6KYWb9uHRz8QQjhTyp3836Glqq3n/F+hpQyD0Sfk3TIzA6Y2SrdOjn5qyWuH13KzNaa2fq3a0k/L+kHurV/PVoZ9qikp5Zmhugyqf3qq5L+y0q3yfdImng78gYUVXM+3l/Xrfc06dZ+9lEzGzCzA7rVTOa7Zc8Py4uZmaTPSXolhPBP3Zd4P0PLpPYz3s+Q0lfWikIIs2b2a5L+jaReSZ8PIbxc1vrR1bZL+sqt9z/1SfrXIYQ/N7PnJH3JzB6TdFLSR5ZwjliGzOwLkh6StNXMRiX9T5I+rfr71dckfVi3mi1cl/SrpU8Yy1JiP3vIzB7QrZjaCUn/rSSFEF42sy9J+qFudaj8eAhhbinmjWXlfZL+jqSXzOzFyn2/Ld7P0Fqp/exjvJ+hHguBKDYAAAAAoDxlRnMBAAAAAOBAFAAAAABQLg5EAQAAAACl4kAUAAAAAFAqDkQBAAAAAKXiQBQAAAAAUCoORAEAAAAApeJAFAAAAABQqv8frAYk2paRUysAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 1152x432 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import requests\n",
"import imageio\n",
"from io import BytesIO\n",
"\n",
"response = requests.get(\"https://www.python.org/static/img/python-logo.png\")\n",
"img = imageio.imread(BytesIO(response.content)).astype(np.double)\n",
"img /= img.max()\n",
"plt.imshow(img);"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA6IAAAEfCAYAAABbM3sFAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3XmwXNV99vtnGSSEBjRLgASSAFlICCSMwAwGZGMIIkwpm1vYlF8FE/PGBYkdXLn2+1Y5JpWkyqlKXl/fVEKCY25IxY5tYjPYxmYQyAwGrNlCsxiE5gnNQgKRdf/QYenpdu9zdp/u3qe7z/dT5eJ3Wt29V+9ee3dv97N/O8QYBQAAAABAUT7U0wMAAAAAAPQuHIgCAAAAAArFgSgAAAAAoFAciAIAAAAACsWBKAAAAACgUByIAgAAAAAKxYEoAAAAAKBQNR2IhhCuDSGsCiGsDSF8rV6DAgAAAAC0rxBj7N4DQzhO0mpJV0vaIGmepM/EGJfXb3gAAAAAgHZzfA2PvUjS2hjj65IUQviBpJskZR6IhhC6d9QLAAAAAGgFO2KMI7u6Uy3R3DGS1tvfGzpuAwAAAAD0Tuvy3KmWX0RDhdt+5xfPEMKdku6sYTkAAAAAgDZSy4HoBkmn2d9jJW0qv1OM8X5J90ul0dyZM2fWsGgAAAAAQDOYO3du1Y+pJZo7T9LEEMKEEEJfSbdKeqyG5wMAAAAA9ALd/kU0xngkhHC3pCckHSfpgRjjsrqNDAAAAADQlmqJ5irG+Likx+s0FgAAAABAL1BLNBcAAAAAgKpxIAoAAAAAKBQHogAAAACAQnEgCgAAAAAoFAeiAAAAAIBCcSAKAAAAACgUB6IAAAAAgEJxIAoAAAAAKBQHogAAAACAQnEgCgAAAAAoFAeiAAAAAIBCcSAKAAAAACgUB6IAAAAAgEJxIAoAAAAAKBQHogAAAACAQh3f0wMAAADF2bt3b8nfp512WsX77dmzp4jhAAB6KX4RBQAAAAAUigNRAAAAAEChiOYCANBiFi9enOqrr7461bfffnuqFyxYkOo1a9akes6cOSXPdf3111dcxnPPPVfzOAEAyMIvogAAAACAQnEgCgAAAAAoFNHcFrJs2bJUn3POOam+7bbbUv3222+neu3atak+fPhwyXN96EPH/j+IEELF5cUYu7xP1nNu3bo11YMHD071Pffck+qf/vSnqZ47d26Xzw8AOGr8+PGpPnLkSKq/853vpHr79u2p7tOnT6oPHjxY8lzbtm1Lte/3AQBopC5/EQ0hPBBC2BZCeNVuGxZCeCqEsKbjv0MbO0wAAAAAQLvIE839N0nXlt32NUlzYowTJc3p+BsAAAAAgC6FPDGcEMJ4ST+LMU7t+HuVpJkxxs0hhFMkzY0xTsrxPGlhM2fO7OaQ29PSpUtTfc0116T6Yx/7WKo9art58+ZUe8wqT4Q27/3yPldXPLLrEbJ333031QcOHCh5jEd4lyxZkupnn322LmMCgFb20ksvpfq///u/U/3ee++leuDAgakeN25cqpcvX17yXJdffnnFZfi+GwCAzpSdZrcgxjijq8d091NmdIxxsyR1/HdUN58HAAAAANDLNLxZUQjhTkl3Nno5AAAAAIDW0N0D0a0hhFMsmrst644xxvsl3S+VRnMhvfXWW6n2qPKQIUNS/eSTT6baL07uXWk9inXcccelul+/fqkuj1jV0hkx67Ee5fUuvR7HPeGEE1I9duzYVE+bNq3kub797W+netasWan2bsHeRRgAepNTTjkl1RMmTEi1x3Tff//9VHvX3JUrV5Y8FxFcAEBP6O6nz2OSZnfUsyU9Wp/hAAAAAADaXZ7Lt/ynpJckTQohbAgh3CHpm5KuDiGskXR1x98AAAAAAHSpy2hujPEzGf90VZ3H0it4HPeiiy5K9aJFi1K9bt26VHvsdujQY5drHTNmTKo9gus8Qlsep/X4VrWyorl54r4eFdu3b1+qf/azn5Xcr3///qlesWJFqr/4xS+m2iO/q1at6nLZANAufH/r+1XvRu78tA0AAJoBJ4YAAAAAAArFgSgAAAAAoFANv3wLpMWLF6f6j//4j1PtnW+9y6x3zR02bFiqvSvt/v37U7179+5UH3/88RXrvPLEa2u5j9/uHXRHjx5dcr8DBw6k2mO6//zP/5zqv/zLv0z1qFHHLmX7/PPPdzk+AGgXeU61qKVTOoDm5VcQmD59eqpnzJiRao/m+3evvXv3pnrPnj2p9u9XP/zhD1P9yCOPlCx77dq1qb7lllsqjs9PPQPK8YsoAAAAAKBQHIgCAAAAAApFNLcAffv2TfWCBQtS7XGqQ4cOpXrEiBEVn8cjFH5/7x578ODBVHukNauzrtT4OG4W7/RYbsCAAan2mK7HjZ966qlUe0dhAKgnP71i1qxZqZ44cWKqL7/88lT76QHPPfdcg0eXTy2d0gE0L//+c9JJJ6Xar0ywdOnSVPt3r9NOOy3V/r3y3HPPTbXHdC+88MKSZQ8fPjzVflWInTt35n8B6NX4RRQAAAAAUCgORAEAAAAAhSKaW4Bt27aleuXKlan2eIRHZz/0oWP//4BfnNxjqR6/8Giudz3zx/bp06dkTHkubt5TkV2pdN14tHnXrl2pfvTRR1P9hS98IdU333xzqss7vAGA89jttddem+rPfe5zqZ43b16qV61aleoHHngg1e+9916jhggAmfx70cMPP1zxPh6hffvtt1P9wgsvdPn89913X6r9FARJmj9/fqr9e6V/Lz3jjDO6XAZ6L34RBQAAAAAUigNRAAAAAEChiOYWIISQau8G69EF72joEdwTTzyx4nN6lNcjYR6DPXz4cNVjzYrRVhuvrfXi6f54XzfeCdhjIB7f9e7CANCZcePGpdr3md/5zndS/eyzz6Z6//79qfZuld/73vdSPX78+FT7qRZFqHXfC6C1+H4o6zujd7H91Kc+lepNmzal2r9r+SkLfjqCf9eSpEsvvbTi/XxMnV0hAeAXUQAAAABAoTgQBQAAAAAUimhuwTz6kBWh8ijvkCFDKt7fO+L6/U844YRUe6dcjwF3tuxa1NJBt7PH+r95bNm7EfsF5P0+HmEGgHLeyXzFihWp9lMevEu5X+jdLxI/bdq0VOfZz9cqz+cHgPZ36qmndnmfDRs2pHrLli2pXrduXaonTJiQ6kGDBqXa47hbt24ted6RI0emesSIEammizjy4hdRAAAAAEChOBAFAAAAABSKA1EAAAAAQKE4R7QHZZ3j45cQ8HNBPX/vlxDw85GGDRuW6kOHDqW6/JIm5eeMVqNel3LJe16o80u2+LlQfj5D3mUAwMknn5zqM844I9V+yYGsy2u5ZrlEAfs8AOX8+5LX/p3Kvyd6f5J33nkn1du3by95Xj9n9MILL0y1n2+ftc8EJH4RBQAAAAAUjANRAAAAAECh+L28YB7xyrrd47j79u1LtbfQ9iiqX7Jlx44dqfb22XljY92J0dbj/rU+L3E0AN3h+w7fZ7bS5Qf8NXjNpVyA3mv37t2p9giuX3Jl9erVqfbvnqNHj65Ye+RWkq644opU+2Wu/HIxHu0FynX5i2gI4bQQwrMhhBUhhGUhhC913D4shPBUCGFNx3+HNn64AAAAAIBWlyeae0TSV2KMkyVdLOmuEMIUSV+TNCfGOFHSnI6/AQAAAADoVJfR3BjjZkmbO+p9IYQVksZIuknSzI67PShprqSvNmSUbcrjuB/60LH/T8DjER6t8Nt37tyZau+A6xEI775bRHQ1zzKI1gJoJlmxViKuAFqZd771Kyq88MILqfbvjH7K12uvvZbqLVu2pHrPnj0ly3jssccqLvv0009PtX+/BcpVdY5oCGG8pPMlvSJpdMdBqmKMm0MIozIec6ekO2sbJgAAAACgXeQ+EA0hDJT0Y0lfjjHuzfv/EMcY75d0f8dz8LMXAAAAAPRyuQ5EQwh9dPQg9Hsxxp903Lw1hHBKx6+hp0ja1qhBtpOsiEJWV1vv3Lhr166K9+lOhKzaiGzW89YSx80rKy7nfHzEfAHUU559UDNq1XEDqJ2f2nXgwIGK9/HvmNu3b0+1X7HBv1/5qWBSaTfeAQMGpNqjwN5NFyiXp2tukPRdSStijP/H/ukxSbM76tmSHq3/8AAAAAAA7SbPL6KXSfqcpKUhhMUdt/1vSd+U9KMQwh2S3pJ0S2OGCAAAAABoJ3m65r4gKSvveVV9h9Oesi4efMIJJ6T68ssvT7XHdPN0dPTuu84jFB6fkLKjtmPGjEn1jh07Uu0d1Lx7b6Miu0VEftGali9fnuopU6ak2i+s7fPyhhtuSPXDDz9c8lwvvvhiI4ZYqFdffTXVf/qnf1rxPs8880xRw2lpWfuzrH1sntMiGrWfYv/XHpYtW5bqqVOnptq/E/gpPddff32qf/zjH6f6pZdeatQQW16edSyVbsM33nhjqn/yk5+kupU+M7xr7gUXXNCDIwGy0VMZAAAAAFAoDkQBAAAAAIWq6jqi7S4rvvHxj3881d5hzGMceS/YO3bs2FR7F7M+ffpUfN483W2zYmP+nOXPk/UYfx3VXsS96A66Pr5Fixal+vzzz0/1rFmzUp313rnOusP90R/9UaoffPDBVP/yl7/MNXYcs2LFilR/4hOfSPW0adNSvWrVqlR7tHzw4MGp3rt3b6qzIlNz5sxJtcfKy/++7bbbUr1x48ZUL168WD3F15Pvhy677LJUjx49OtWvv/56qssvPN5TfP194QtfSPUpp5ySan/vjj/+2MeSd3288MILU7158+ZU+2kD5davX59q36d7R8cTTzwx1YcOHUq1z63+/fun2k+d8G6Q/vnhF4Yvj8T5Pubtt99O9SWXXJJqf31r1qxRs1m5cmWqzzvvvFTfeuutqV6yZEmqfXvK+tz0+/zBH/xByfI2bNiQat/XN7u1a9em2mOgkyZNSrVvBzt37kz1888/n2pfT08//XSqff/l81gqnct//ud/nmo/taFVI/u+zWftC/37lX/v2rbt2AUefB2Xe+GFF1K9f//+VPv27/uqu+66K9W+jolMA53jF1EAAAAAQKE4EAUAAAAAFCoU2XkvhJAWNnPmzMKWW+6tt95K9eTJk1N99tlnp9pjQh7x8FhR3uiq32/hwoWp3rRpU6o97tEIecfqkV2P9nqUzW/Pivi6enbQ9YiSx9fGjx+fao/CnX766an2CzTnjVI7jzr5c91zzz2pfu6551L91FNPVb2MduKxNEm66qpjTbbPPPPMVM+fPz/Vvl6zeFzVL8CdNRc91nvyySeX/Jtv/x7F9I7RHrny5dUrcrV06dJU/+Ef/mHJv02cODHVjz/+eKoPHjyY6pdffjnVo0aNqrgM3w6K5tHcb3zjG6n26PvPf/7zVPv+xdf3WWedlWrfJ3icsZxHX31d+v7WO5n7fsHH590nnUehs/Yp55xzTsnffr+s1+d8LjqPJ5522mmpLo+ff8C7tJfP3SuvvDLV/n551PbSSy9N9bx581L95ptvprrWfewHPAopla6Du+++O9Ues+zJCKS/F7//+7+fao9o+3r100R8f+avM8/+zGO9/v1FKp0Hu3btSvXFF1+cav9M8+9FPSkrzuz7al9nvv37enUelc2zjqXszw3v1O77oa1bt6bat3m/z5YtWzKXB7SDuXPn+p8LYowzunoMv4gCAAAAAArFgSgAAAAAoFBtHc31C73ffPPNqfbuiR7n8c6NHqEo755ai2o70RbN54NHuTya5p3i/P7VzqW8988TzfUYjatn5Nm7Eo4bNy7VHvnzmK7PrSeffLJu42g23tXzk5/8ZKrLo4Ye53vllVdS7TE8j5N5d1yvBw4cWLHO6qh8+PDhisuSSuNUHgn199qf9/bbb6/4vB6PrZbHzD7/+c+X/NuvfvWrVHu0zyNlffv2TfW5556b6n79+qW60dH/znhUxyNrHoV+5513Uu3bsnf+9fh91hwo55E8j0n68/ry/Ll8zvk+z2V12fXTOcrjf74P83F4vNaX7Z15XbXRXJ8nHoeXSiOe3rnau5C+8cYbqfbPVo8/+2elzz+vna8Lj5sPGDCg5H7etdi3Td/f+PZYRKdhjwX7dufbmu8XfK74fcaMGZNqf91Zc87jpz5/yrtkewTVP8t9GT73/+zP/qziWBvVWdf3Z7Nnz061n8LxH//xH6n2fbXHwX3e+HY3dOjQVPt27d9lfJ8vlW6rXvv68Jizf0/0deyfP9ddd12qiemi3RHNBQAAAAA0PQ5EAQAAAACFartorsc9vvjFL6bao0f3339/qj1m4dEej3J4rChrfXW2HvN0ls1S7fJqWVb5473OE8GttTtunvtlRXM9dpYVq6xVVlTHI39eP/jgg6n2i2PPmTOnbmPqKVmxNF/fHnWXSiNlHl3yi417ZC0rEj9hwoRU+3btc8C7xK5fvz7VS5YsKXku3+Z9fOvWrau4bI9f3nvvvan2+dDZRdIr8fitd4aUSuec74c8duaRSV83Re7bO+NRnY997GOp9tfm27XH5fx98E7LPjc6e50ee/bHe9zVY7Ae3fZunFlz0d93f3+GDx+e6vL4n//t792MGccSTL59+ZxzHs31eGfWWD2G6cst/7es/apvm77N+j7P30ePQHp02KOU/jqdr1epNIrp77e/X1//+tcrLqNe3XTLx+r7PY8q+3cKXx8eLff31CO4vj/yeendY33f6d39N2zYUDI+j6l6fNqX5+/77t27U/3lL3851R6bryWm6/NKkqZPn55qj17752NWxH3kyJGp9jnqc9873fqpNP79wLcbqbTrs39ueO1z08ft69hjuh6Rztr/la8boFURzQUAAAAAND0ORAEAAAAAhWq7aK5fIDwrduuxHY/2eWQlK6KapTuR2HpFWWvpXFvrOBrxGjqTFc3N0/E0z/K609U4K6oza9asVHsEaMGCBVUvoxls2rQp1R/96EdTvWjRolT7e1J+QXtfBx738jjVXXfdlWqPHnqX3fLnrcS3R4/1le93fK6sXr264nP5hd69I6nHLz1SW969sivPPfdcqi+99NKSf/N1kxVl9Xiex0+bhUd1Lr744lRnRUh9P1zra/O4nPOYqX82eITP17e/p76v8e6s3vnT9y+//vWvS5bt751HAbM6fw8bNqzi7dVGc7PmTPk4spbtp6v4duAd6b0TqHcs9vpTn/pUqn0+PPTQQ5nj8XXun/G+7/W4pr+P1W6PLusUBKl0Hfp3Df8M8XXmz/WRj3wk1X5KgD9n1n4ua9925ZVXltzP921ZXYR9DjmPlnqn66yOzFn88+Ciiy4q+TffL3hHXH/dZ5xxRqr9dZ933nmp9jngn1F5PifK+TJ8TJMmTUq1rxu/T1a3b+9S7O/DV77ylYrL9VM1gFZDNBcAAAAA0PQ4EAUAAAAAFKryFZNbzMqVK1Pt3RC9i6FHZ7yDn0ciPK6VJyraLHHcei23Ho+p5rFFd/WsNo6bd3we1fEuf48++miqv/SlL6Xao2yPPPJIrmU0A+9O6BEjj595PG7EiBElj/fHXH/99an29f/AAw+k2mOVHmvz6KE/1t8vv927dz755JMlY7rppptS7V0tfay+v/AonHce9deaFVvOozxWmSdmiWx+GobHPX07dR6j826wWTxW6Z9DPnfLY5E+Nz3q6LF+X3ZWNLda/nlV3i3Ut23f1nw93XHHHan2uPrTTz+dau8G6x1t/XPZu9h6jMvjj37/8uf1SLx3VV62bFmqfZ904YUXpjrP9rh27dpUe4zYt30pO/bty/bnuu2221Lt63jevHkVb/fTF5xH10eNGpXq8n3bjTfemGo/dcA7/Po+z1+fd9D12y+44IJU5+n06p+N3sFaKp3XHr321+TL9s8M324WLlyYao/K+vbu25zX5d/hstbt0qVLU+3drf01+Hvnnzk+Dt+uX3755YrLAnobvs0AAAAAAArFgSgAAAAAoFBtEc31KIxH5LJit9V2xHXdiePm0Upx3EZ30O3sMY2I1+YdU577ecTIYzjemdPjQ63EL8ztsXePj3qkzmOLUmmcyp/LY08e9/Ln8guBV8vjceVjevjhh1M9derUVHvHSX/vTj311FR7DNkjnR7ZRc8aO3Zsl/fx+eHvu3fj9Ci072s8uuq17wemTZtWxYjzq+XUhvLI9/r161PtEUiP1/7jP/5jqn0f5nFG3w7OPvvsVC9evDjVHmn11+DruDzWn8W73nsc0ve9GzZsyPVclZb94osvZt7Pv1P4Y7zz7SWXXFLxuXz/5/FVj/Xn4V1vfd1L0g9+8INU33LLLak+66yzUu2dwj2m69+pPFru3Yh92/J4sfO4avm26NuR70ud73t9nfljvVutR4dr5Z9F/rnhHdx9Xfr691i1z0uPtPt69ffBTwUBegN+EQUAAAAAFKrLA9EQQr8Qwm9CCEtCCMtCCH/ZcfuEEMIrIYQ1IYQfhhD6dvVcAAAAAADk+UX0sKRPxBinSZou6doQwsWS/lbSt2KMEyXtknRHJ88BAAAAAICkHOeIxqMncXxwokifjv9FSZ+Q9NmO2x+UdK+k++o/xN/l55tI0pQpU1Lt5zbMnz8/1d5mu9pza2o9L7TR51TWehmURi+jnueqVnsuaNblPWoZQ2f38+Vt37491c8880zFxw4dOrSqMfUkP+/NL/fgfFvxc8ek0jb2fg6Nn2dz+umn1zzOcv785ZfS8HOQ/DygCRMmpNovO+Dnc/k5S/6811xzTaqvuOKKVD/33HNVj71atcz3omVtN1ma8bX5mPwcx2a8vI6fS+fnqkmllzHasmVLqv3SLM7Ph/Nzq7NMnz694u1+DqHXJ598csn9/PPbz93zc9X9Uh++r/K5knUuop8n7OdK+v6s/NxvP1/S92d+LqSfT5i1b/TlVevMM89M9apVq0r+zdfZT3/601Sfe+65qc46F97fC1+X/nqy1qXr7DPDtxE/39bXTdZnhr+nfp5wPfnz+pzz99HPtfbPcj9f3F+bbzd5z4MG2l2uT8sQwnEhhMWStkl6StJrknbHGD/YCjdIGpPx2DtDCPNDCPMr/TsAAAAAoHfJdSAaY3w/xjhd0lhJF0maXOluGY+9P8Y4I8Y4o9K/AwAAAAB6l6ou3xJj3B1CmCvpYklDQgjHd/wqOlbSpgaMr6LBgweX/O3Rh71796baYyfValQct6fu353HN/pSLnnv7/E3f689CrN79+5U+xzwKEye+F9n46j2NXksySPj/hpaib9+3z7yrhd/jF8awzU60jhx4sSSvz1e5jGwRYsWpdovI+Pv3fDhw1PtsUd/39etW1fV+MrXZdH7hZ5SxCkI1WrndVl+GSOPlvt+0uODHgOtl1GjRqXaI8Hnn39+yf3yXP7KL9mSFRvNWjd+iQ3ffn1796hruYMHD6ba92Eeu/XPKL8MVL1MmjSp5G9/T33Z/t77aQuvvvpqqn2f55fb8dMLPvvZz6b65ptvTvUjjzyS6qzPjPK/s94Xv49Hczs7BaQRsmK6kycf+03GL0/m0Wbncyvr+2mr7neA7srTNXdkCGFIR32ipE9KWiHpWUmf7rjbbEmPNmqQAAAAAID2kef/SjpF0oMhhON09MD1RzHGn4UQlkv6QQjhryUtkvTdBo4TAAAAANAm8nTN/a2k8yvc/rqOni9aOI/wSNlRHe+853GHPDGQanWnw2ojYnfdicr2VPwv7/N4VMzjL7t27Uq1R4n8Plnd+OoZBczTsddjT/fcc0+qPZ7z+OOP51peM+jOHMjqMNqTvPPtnj17Uu3RPo93+5zz9+61115L9dKlSysuy7tp1lMrRbmaPWrcSuvS5Rm3b38eQ5eyu2A3Io6bxeOtHn+USvfpeTqnV/s+eodzj7F21p3Vvy/s3Lkz1ZdffnmqfT9X3tW20fw0BN+3eezZT5Hwsfpr83i2x2N9/+evP0t3Tjtoxq7UPhd9vZbH3SupZY4C7ao5vg0CAAAAAHoNDkQBAAAAAIVqfLuxBvAOd1J2bMc7WTZLHLfI+9cz+tHoLrvl/H3092j//v2pnjHj2BWBvIOpxyQ3btxYtzFV+/qy5qJfhB09y7tGbtp0rPH3mDHHLoucFbnyeendPzds2JDqu+++O9UezfXOkrXyeeY10S9kKZ8b3pXW/63ICKR/jpeffuPbYJ7u5y5rn7x8+fJU/97v/V6qjxw5kuqFCxemunxd+N8eK/bHN8spCH6lgYceeijV3mnYO/z66/HPqwMHDqT6iSeeSLWvV3+eduTz1E8L8/c9D/bVwFHNsZcEAAAAAPQaHIgCAAAAAArVktFcj5NIpbGiRscdmj2OW09FXmS+PG7lf3scyKNO69atS/XKlStTndXZr9qOdfV8r73b6sMPP1zxsVkXuG52RUTDi+Axqw9/+MOp9ihW1kXV+/fvn2qPsvn77hczzyvPum3VToxZkclmeQ2tOq+7M+6seHdPKR+D7/frNd99GQMHDky1x4B9Wy4/jcc7svupIc8880zF+/hpAEXz70he+2eO75/8tXpHZV8f3dmfuVbdvrJU+3pa9XUC9cYvogAAAACAQnEgCgAAAAAoVEtGc48/vnTYHiPJE/GqtlNu0THOPLK6ynYnBtIMMeLy98TjQ+ecc06qf/Ob36TaL0LuPEqUJ8ZVRNdc56+1lq7NRct6/XljlXnWTU/GlTxGN2DAgFR7BG3Hjh0VH+uRtd27d6d6/vz5qfb9VvnpBR9o97hWM8bUap3XPaWWMZU/thm2x8721bXsJ7Nem39+zJs3L9Xe/dS7nZfbt29fqj067LVH+XvS1KlTU/3GG2+k2jt5Z50C4++F7xdHjBjR5XJrnT/N/pnRjPsFoNXwiygAAAAAoFAciAIAAAAACtWS0dxyHtvJuoB0M8Zxq41xemTIY4QnnHBCqj2Wmle1r7Ve0Vx/Dd6lVJJ+/etfp9ovPO7dDffv359qX38egawlCljPyK7Py6xOvuhZhw4dSvXmzZtTnXWhcn/vfM55nG/YsGFdPhZAqaK3D99m835X8M8vP33E9/Ue320Wvj/zDsHeHTzre5R/v8jq8s6+DUA1+EUUAAAAAFAoDkQBAAAAAIVqi2iua3QX0nrGcT3+4nGZgwfm+EEgAAAgAElEQVQPptojpzfffHOqV6xYUbHuTgfTau9Tr+iNR2u9S64knXHGGV0+xmOPWR106xnBrdfzZsWeWinS5GP1iFrWa+vs8c3C9x2+Dfq2mff1fSAr0p4Vxe9sTO0mzykVRat1XvcUH3d31mszbo8uz3bQ6NdQ3kHXo/zecbZV5ZkreTr0Z+msE3KeZbfSHG2Hz3igKM396QoAAAAAaDsciAIAAAAACtV20dxaNKrDqv+bx3s8ZjphwoRU7927N9Vr1qxJ9SOPPJLqkSNHprp///6pLo+4dme83b1/ngvD++v32rvhStKWLVtS7TEXXzfeLbheY631MdXGL4nqtIc8c79WeeJreaP5raidX1s9NXuMuFZZr6+WbS1PtNmj2pI0YMCAVHuU3x9f/rnW6uq5P2sH1Z464euP/RlwVHt/YgEAAAAAmg4HogAAAACAQrVkNLeeMYZanivvYz2C4XHciRMnpvq3v/1tqjuLrH7g+OOPvXU33HBDrnHUS574aZ4IzwsvvJDqjRs3lvybrye/iHaj47i1dkXuznO1oqxIUi1dFZtJVvyv0V1sO3v+rHWbVTejaudN0a+n3eZ1O4y7M/WaK93Zrv0zeOnSpan+kz/5k1SfeuqpqfZTa3pSns/vPPOm2tMRurNva1XtsK8GipL7F9EQwnEhhEUhhJ91/D0hhPBKCGFNCOGHIYS+XT0HAAAAAADVRHO/JGmF/f23kr4VY5woaZekO+o5MAAAAABAe8oVzQ0hjJX0+5L+RtI94Wj24hOSPttxlwcl3SvpvgaMse5qiVXmvd3jKe+++26qx48fn+oFCxak+uSTT0711KlTU7158+ZUr1+/PtWrVq1K9erVqyuOqRnl6aArSf369Ut1tXGWRnQE7s6ye3uHwUbHWOvNI+A7d+5MtXfLHDJkSJfPkyeyVmssq9XWbTWyXluzRNmaZd1ndXrNEy9uZXleax6+/nzbd0eOHMlcln9G+Sk0vp37fqRZ+Getd9nP6hbst+/bty/V/p3Fbd26tabxtcs8/UC7vR6g3vL+Ivr/SPq/JX2wRQ2XtDvG+MFeeoOkMXUeGwAAAACgDXV5IBpCuF7SthjjAr+5wl0r/t/VIYQ7QwjzQwjzuzlGAAAAAEAbyRPNvUzSjSGE6yT1k3SSjv5COiSEcHzHr6JjJW2q9OAY4/2S7pekEEJdslXlkUePPtRyweBa47hZY/QOsK+//nqqb7755lQvWrQo1QsXLkz1nj17Uu3xIY8CNUtkrdp1nDdyW2RH3O6syzzzw2uPRvnt5RdMbzbNMs8axd8Xj9NnvS8eX/P7e2TNI/T+PJMnT65tsKibes3rrCh+u283zSjPZ/+oUaNSvWTJklQPGDAg1WeddVaqDxw4UPJ475q7Y8eOVP/iF79ItX83GTFiRK6xN8LixYtTfeutt6b6vffeS/WvfvWrVA8ePDjVvp/zqHJWR3+P5jL3s9XzVA2glXX5i2iM8X/FGMfGGMdLulXSMzHG2yQ9K+nTHXebLenRho0SAAAAANA2qumaW+6rOtq4aK2OnjP63foMCQAAAADQznJ1zf1AjHGupLkd9euSLqr/kAAAAAAA7ayqA9Fm4edjSaXnavj5DH7+Q5ZGnR/kbdEnTJiQ6o0bN6b6iSeeSPXQoUNTvXfv3lT7eaHVXsakM/W6xETR52Y24tIs9TwvNM/9sy5NU34OEoo1aNCginWec3f9PPCsS0EcPHiwhtFly3PJIM5BagzWa3PK8774du3nPjr/blH+nH7+Z//+/VN96NCh3OMsip/36uez+jrw1+r8+9awYcNS/eSTT6ba18XEiRNrG2wvwb4DOKqWaC4AAAAAAFXjQBQAAAAAUKiWjOZ6DE6STjvttFR7NG379u0VH9+IS7mU8zjLypUrU+2RP4/vbtp07Oo3J554YtXLq6SIyGktz1PPOG6zRHazHp8Vn2z2S7a4dowSrV69OtUf+9jHUu2x/mXLlqXao//+Pvq2PGPGjFT7JWE8EpelfB1nzRu/3WOBHu/2uFzWpRaK1oxzyNerrzOv/X13fvs777xT8T4exUc+RXx2TZ06NdV++ZaLLjrW+sI/x8tj7748j776Jdo+97nPpXratGmpfuSRR6oaa638u5BfpsXnuH+Pcrt27Ur1CSeckGqf+34fZGvG/R/Q0/hFFAAAAABQKA5EAQAAAACFaslo7p49e0r+njJlSqo91upROI+gZKlnbMIjcuPHj0/15MmTU71+/fpUe0SwiDhuO3TH7anIbt7H+O0jRoxI9UsvvZRqj+Z6dKvdNUt315EjR6Z6w4YNFceR1U3S37tt27al+swzz0y1d+PsTjQ3q6tl1vjWrl2b6uuvvz7Vo0ePTvW8efO6HEc9DRkyJNUrVqxIte+Tzz777ELH5DyG7TFaj2VmdVX1qGLW+zt27Nhah4gGO/XUU1O9YMGCVA8ePDjVPo+l0u643k22T58+qd65c2eqPf5bhMWLF6f6qquuSrXPcf8s8qit73d2796d6rvvvjvVvv368wBANfhFFAAAAABQKA5EAQAAAACFaslorsfMJOmFF15ItXeH9Pt5VNYjKPXqoFseNfTYinfR27t3b6r9AvfeXbNaWePrLH5bS1fgnorN9vSya1lGs0RR6yWrI3DWfaTSOb5v376Kj2l0d9c1a9aU/O2dIn2bfeONNyrex3mnyPPPPz/VHlPzbpUe/3MeD/YO21JpR1yP/HqHVo+HnnHGGaneunVrxXEUzfd5p59+eqqLPl0ii382nHLKKan2aO5bb71V8bE+p/29yvPaitCq+5dyjX4dfrqPR6x92zz55JNLHuMxeN8G/ZSbn/3sZ6n2brwzZ85M9csvv9zNUXfOx+v7W3+tvr/170UeKfbY/LPPPptqPx2h1vh5q87TPJ+DADrHL6IAAAAAgEJxIAoAAAAAKFRLRnM96iWVdjT0DojeQdfjV0VEN7O6LGZd9DyPPBHcPPfvzv1atWtukfcv5/G8iy++uOLtPi/bQWdxcO9A+dprr6Xat9m/+Iu/SPXmzZtTvWjRom6PySN0s2bNKvm3w4cPp3rp0qWpHj58eMXn8m6SHl/zSKdv+x5fy4rmZj2/VBr39Bidz5u+ffum2jv/ekTQTwP467/+61T7Oq41IugdcT/5yU+m+l/+5V9S/fOf/zzVmzZtSnXW/jJr31ZPvj3u378/1R7Nzbq/xx/986b8fewpRay/ZlHLaz3rrLNS7dv+li1bUl3ePdu76Pq88VOCvIPuqlWrUn3DDTek2j8batkGfaxSaRz37bffrnj7pEmTUu37YZ/XfrqA79P9tdUazW23eZr1etrtdQL1wC+iAAAAAIBCcSAKAAAAAChUS0Zzp0+fXvK3dzT0KJxH8jxuk9XRsJ5x0KyIYrXRjHrFcZsxptud+7dSHHfUqFGpfuWVV1Ltsb1zzz23puU1G19/5duZR7k8ZurR0sceeyzVHtf0WJzH6MaNG5fqAQMGpNqjst4B99///d9LxuSRVX9fxowZk2rf1jxO6pE6H5/vd8r3VZVMnjw51eXRPL8QvXe19M6ePm6PBfr68Nfw0EMPpfrQoUOp9nXm69gj1VJpF2GP+Xnn4DfffDPVf/M3f1NxrP7++rg7i3c3wqBBg1L9/PPPp9qjtt6x2OPcPlaPOftr+/u///uS5XlEc+7cud0cdXbHzlo/A1pJI7qW+rbl25y/b1LpdpvVPdnjsr6f+7u/+7tU+9z66le/murf/va3qfZ56fuXK6+8MtUf//jHS8bnMXg/nemkk05SJR7l9+f1Uwr89IU8cdzO3p92nqfVbptAb8YvogAAAACAQnEgCgAAAAAoVEtGc8t5B0nvXudx3BEjRqTaI1QevcmSJ0KSN3ZS7TJquX8zxnG7E01phg66eZ/L46hZcyurG2cr6U4U0KOfHgn17THrYuseFfX7e1Q2K9LpkTrvDCmVRih9fG779u2pPu+881K9ePHiVHs37Fq6SZbf//vf/36qZ8yYkepp06aleuHChRWfyztlekTQx+fx02HDhqV6+fLlmWN86aWXUu3r2WN7vh/2+3hc3Zfn243HHIvg88bfx/Hjx6f67LPPTrW/774uhw4dmuoTTjgh1f/wD/9QsjyPbnpc8/LLL0+1dz8uj4RW0m7xv1o/T2sxceLEVPt24/sBqfT9vuiii1L9xBNPpNq7z/pz+Xbnz/utb30r1T6HJkyYkOrTTz+94mM9ci+VblNe+37VT2v61Kc+pUo8IlxLd9yefE8bpd22O6An8IsoAAAAAKBQHIgCAAAAAArVFtFc7143cuTIVL/++uup9jifR6M81psnpptXns6PeTriFt19tqdisI2K7Na6jDzP5bGnrOiSR1HzdFJtB+Wdnbdu3Zpq7xTp3VY9huhdHOfMmZNqj9NmbSu+LXuEzqNyUmlEzmOZO3fuTPWFF16Y6mXLlqXaI6R+cXuP9lXLO3ZKpd14X3zxxVR750vvcOndmX3OeZzPOwV7l/Gnnnoq1Z11+s66qL3ve70Lrr8XfoqEP9Yj2UVH3Pzzw+fHa6+9lmrvouydrl999dVU+2eMr1d/nVLpXPHlrV69OtV54vv+vnid1RXeOxaXr2PfpnxeV9vlvV583kulY8+q/XX76/H5V+1nvL8//fr1K/k3Py3gn/7pn1I9ZcqUVPu+x+3evTvVvl/0OL3PE18fa9asSbXvs3xdSKXbmq8b36/efvvtqfZ97Lp161Lt89dfWx5Zc7R8TC5rnjbbHJVK51Oe19OIOQq0ulwHoiGENyXtk/S+pCMxxhkhhGGSfihpvKQ3Jf1fMcZdjRkmAAAAAKBdVPN/vXw8xjg9xvhBx4yvSZoTY5woaU7H3wAAAAAAdKqWaO5NkmZ21A9Kmivpq1l3LopH2zzO4jEavyC7R9a8q121nU1rvVhzI+K4RXTNLSIeW2QEt7PHZnXI846GHmnySI7HrNpBVuSqs0inx+A94vXyyy+n2js6Xnfddan2LqIe4/R4UxaPQ5V3zfVY3OHDh1P9V3/1V6meO3duxefqLPLbXeWx7RUrVqTau2j++te/TvULL7yQ6gsuuCDVHjnN6rx6xhlnpNojYZ3F3bwjrscVff1dffXVqfZ9r8eLx40bV/F5PFJctKzuwj5HvdOtf5b4e+fdTD1uKZW+viVLllS83+DBg1M9aNCgimP19e3bgW9D/hnoccbymKnPX4+N5tm+GmHv3r0lf/t4fd346/PIuXc83rXrWFDL90HVevPNN0v+9vfR9wvz5s1L9WWXXZbq66+/PtWLFi1KtZ8G4NuWj9VPCfDTCTx+W/5e+fhuvPHGVG/cuDHV//qv/5pqnx8+x30/Uq2sOSpVP0+bbY5K2fvCAQMGpDprjvr+z7d9j1sDvUHeX0SjpCdDCAtCCHd23DY6xrhZkjr+Oyrz0QAAAAAAdMj7i+hlMcZNIYRRkp4KIazMu4COA9c7u7wjAAAAAKBXCNXGGEMI90raL+kLkmbGGDeHEE6RNDfGOKmLx6aFzZw5s+rBVssv1uwRCo9H+O0e+fGunlk8jlPe6cwjmr48j2+UxwS7Us/us1n389fk0VKP6nid54LO3Yn11vK8LquTXR7lz+8xxjfeeCPVHg3Kim6ed9553R5Hs/B456mnnppqf/1ZnWslafny5ameMWNGqv3xHlPzbcU7YHuc3jvu5om9e2RUkp555plUL1iwINUe//Volcdja7m4e3d4PM/jWz7n/H3xSGy168xvv/baa0v+7cknn0y1Rwx9Pfl76hFDj0n6WL0LsD/Wu89OmnTs46WIzro+3/1UDd8v+mvw6KbPDY9LS6Xz2qPAn//851PtHUxXrqz8//v6aSi+zvxzxSOCzjunSqVxSK9riWVWy+d3eQdY/9sjjc7nmceqfV56lLWefFvzSKy/Lz7H/fuBb5sXXXRRl8vy5/Rt8+mnny6538KFC1PtEVkfq++jPfJ7zjnndDmOPLLmqFS6TXlM1/k8bYY5KpWeLpHVwdkj+64n5yhQBD+VSdIC6yuUqctobghhQAhh0Ae1pGskvSrpMUmzO+42W9KjVY4XAAAAANAL5Ynmjpb0cMevCsdL+n6M8ZchhHmSfhRCuEPSW5JuadwwAQAAAADtossD0Rjj65KmVbh9p6SrGjGoevHIi8esPMrmkQi/3aOXeeJr5V0m9+3bl2qPnXg0zWNTWV0qa4mlNqpDbSMuIF2+3Kxl+Hvk8SGPy1TbGTHv6/E55NEgj+S0WxzXZcWl/fV3dmFuj2b5dueRRn/vPGLocSV/v1599dXc45ekxYsXl/ztEVzvoOtj9+03T2S/UbLicn6Be4/C+Rz1dbl06dJU59nePTIplZ5q4LXv2zx+6usvq/aYns+NPBH9RvEosPMOzt7tsn///qn2bcLXdzlff1//+tdTnSeq54/1LrO+DfnzuPJ9pEfOs+K8jebvb3nnUI+W+mez8/2LvwaPxDaKR7R9n+TfAzxmPnLkyFT7/syj7i7ru4bf3+eDVNq52WOg/hk1ceLEisurl6w5KlU/T5thjkql30H89TX7HAWaVTXXEQUAAAAAoGYciAIAAAAACsWBKAAAAACgUHmvI9ryss738fOfss6v6g4/58Fb+fs5aa5e53zWevkWl3UuRPm5KD3FL7fh52c5v73ac1vL7++X+hk0aFCqp037nVOo217WZXHyXi7Hz8H88Ic/3OX9/dIvGzduzLWMPPxcrSuuuKJuz1ukrPO8fN+Wdc5Sd/g5i1OmTKnqsWvXrk21nxeadd5+M8q6bI+fp553ffs+xtfBsGHDUp11jqj3QGgHU6dO7ekh1EWe1+H7s9WrV9dlueXz5KMf/WhdnrcW7TZHpfpd2gbAUfwiCgAAAAAoFAeiAAAAAIBCNXcGqgBFxCzmzp2bar9kQaMvzVLr5Q6KvlxCtTzC98UvfjHVo0aNSvXjjz9e6JjQGNVGQNE8ETK/ZM6nP/3pVPulDJ577rlU54nTd3bprJ4yefLkijVQjv0ZABzFL6IAAAAAgEJxIAoAAAAAKFSvj+YWzSNl1UZfi+ia6zG3vn375htYheesNTqX57nee++9VHsH3WaPFPcWeTvoor316dMn1e+8806q33///VR7F2Xffr1TtUfu3bZt2+oyTgAAUCx+EQUAAAAAFIoDUQAAAABAoYjmNqFGdMStNbJb7f2PO+64VHt324MHD6a6s+imR/WyYnt5xgGgZ+3atSvVzzzzTKq9a+7o0aNT7ZFdj9+fdNJJFZ+faC4AAK2JX0QBAAAAAIXiQBQAAAAAUCiiuQWrJVrak3HcPPfxOO7AgQNT7dE8j+N65NYvYi9lR3j9MQCa34ABA1J9+PDhVPs+JSu+75Fdj/X680ycOLF+gwUAAIXhWz0AAAAAoFAciAIAAAAACkU0twfVKxLbiFhvd563b9++qfbOlx6784vbO79wfflzvfvuu6nOiuZ6LNj5OAAUY8uWLak+88wzU+0x+x07dlR8rEdzfT/g275HcwEAQGviF1EAAAAAQKE4EAUAAAAAFIpobsE8ytqduGw1j61n19w8j/V47Lhx41Ltcbysi9IvWbKk5O99+/Z1uTwXQujyPgDqa/Xq1am+/vrrU33JJZek+vnnn0/1O++8k+phw4al2uO4J598cqp9n+KPHTt2bC3DBgAATSDXL6IhhCEhhP8KIawMIawIIVwSQhgWQngqhLCm479DGz1YAAAAAEDryxvN/bakX8YYz5Y0TdIKSV+TNCfGOFHSnI6/AQAAAADoVJfR3BDCSZKukPSHkhRjfFfSuyGEmyTN7Ljbg5LmSvpqIwbZTjxC6l0gs7q79mRH3Grv7xFcj+YOHDgw1du2bUv1gQMHUu2ddSWpf//+FZft3TKHDj32I/zChQsrjmP69Oldjhv5ZMXKvfb5jda1fPnyVF955ZUl/3bZZZelet26dal+8803U/3yyy+n2rteHzlyJNX9+vVLte8Xzj777C7H5LFeAADQmvL8InqGpO2S/r8QwqIQwr+GEAZIGh1j3CxJHf8d1cBxAgAAAADaRJ4D0eMlfUTSfTHG8yUdUBUx3BDCnSGE+SGE+d0cIwAAAACgjeTpmrtB0oYY4ysdf/+Xjh6Ibg0hnBJj3BxCOEXStkoPjjHeL+l+SQoh9Mp2psOHD0/122+/nWqPNA4YMCDVHl/L0ohoba2Pee+991Ltkb2rrroq1aNGHfvh3KN2kyZNKnkuv9j95s2bK46pPM77AY/molj16gqN+tq+fXuqPdLu3Wf99gkTJqTat0VJ+sUvfpHqlStXptojuH6qgXfB9X3bW2+9leo777wz1R7Zf/HFFyuOFQAAtL4ufxGNMW6RtD6E8MGRwlWSlkt6TNLsjttmS3q0ISMEAAAAALSVvNcR/RNJ3wsh9JX0uqTbdfQg9kchhDskvSXplsYMEQAAAADQTnIdiMYYF0uaUeGfrqpwG8pkdcT1yO7OnTtTfeKJJ3b52CxFRHCzeDTX47Tz5x87PfjCCy9MtXe09a63UmkHTr+Q/ZgxY1LtHVoPHTpU8XlRP76+vc6ao1nRaRTvuOOOS/XgwYNT7V2o165dm2qPze/Zs6fkufwxI0eOTPVJJ52Uao/gbt26NdU33HBDxdvvu+++VPu86du3b6rplAsAQHvJex1RAAAAAADqggNRAAAAAEChyM4VwKOiHnnzDrpDhgxJ9e7du1M9cODAVHtXylrjtLU8Puux3q3Wo8Yeu33ttdcqPtZfsyQdPHgw1aeffnqq169fX3F53vETjbFv375U+3ty2mmnpXrXrl2p3r9/f8njfd54dNNjox75Rf1411zftvw99fdk0KBBqR4/fnzJc/n76DFdj9DPmjUr1R7Tf/rpp1O9cePGVH/oQ8f+P9E+ffqk+pxzzqn0cgAAQBvgF1EAAAAAQKE4EAUAAAAAFIpobsGmTJmS6hUrVqTaY7rOY3Aezc3qrOtx1XqqNsrr4/AL1Htc05/To55S6WvNiuN6nPm8886ranyo3rhx41Lt89Wjl3771KlTSx7v75d3W927d2+qq+0SjXx8G5w0aVKqPYLrsWqP8npsVpJmz56d6pdffjnVS5YsSfUvf/nLVO/YsSPV3hF31KhRqZ44cWKOVwEAANoJv4gCAAAAAArFgSgAAAAAoFAciAIAAAAAChVqvQxIVQsLIS1s5syZhS23FSxdujTVfq6Wvz9eDx8+PNV+qRS/3Mt7772XuTw/17LaOZB1f7/0ht/Hbz/77LNTvXbt2lT7ZSCk0kt6+HmDfp7htGnTqhk2arRq1apU+2U/fJ75vPS5KElbt25NtZ8r6PXkyZPrM1iU2LZtW6r9/Guv+/fvn+rO9gm+PfqlYPz84L59+6baz0PlXFAAANrT3Llz/c8FMcYZXT2GX0QBAAAAAIXiQBQAAAAAUCgu39Ikzj333Iq3L1u2LNUewc263ItfHqUzHn2tJabrPIKbxV9P+WUh3EknnZRqLs3SHPyyH1nWrFmT6i1btpT8m1+mxWOgXqMxfN/h+4hDhw6l2i8J5bcfOXKk5Ll83+FR7Isvvrg+gwUAAL0Cv4gCAAAAAArFgSgAAAAAoFBEc5vcOeecU/H2xYsXp3r37t2p7tevX6q9u2V55Darq22eeG3W/b32+J7XBw4cSLV305w+fXqXy0Xzoytqc6IbMQAAaDb8IgoAAAAAKBQHogAAAACAQhHNbVG1Rlk9zusXpffao7Ye5c3qeDpkyJCaxgQAAACgd+AXUQAAAABAoTgQBQAAAAAUimhuE/KOuB7Bvfnmm3tiOHX1pS99KdXf/va3U/3II4/0xHAAAAAA9IAufxENIUwKISy2/+0NIXw5hDAshPBUCGFNx3+HFjFgAAAAAEBr6/JANMa4KsY4PcY4XdIFkg5KeljS1yTNiTFOlDSn428AAAAAADoVvBtql3cO4RpJ34gxXhZCWCVpZoxxcwjhFElzY4yTunh8WtjMmTO7OeTitXNUtt0RBQYAAAAaa+7cuf7nghjjjK4eU+05ordK+s+OenSMcbMkdRyMjqr0gBDCnZLurHI5AAAAAIA2lbtrbgihr6QbJT1UzQJijPfHGGfkOSoGAAAAALS/3NHcEMJNku6KMV7T8XfLRnObPWrrsVEf6+7du3tiOHU1ZMiQVDfjus+K8krEeQEAAIBKuhPNreY6op/RsViuJD0maXZHPVvSo1U8FwAAAACgl8p1IBpC6C/pakk/sZu/KenqEMKajn/7Zv2HBwAAAABoN1V1za15YQVHc+sVwW3nqGy7q2cUmA68AAAAwO9qdDQXAAAAAICacSAKAAAAAChUtdcRbXp54rhEbXsPf089MlAWH0iyorzlPKbriOkCAAAAXeMXUQAAAABAoTgQBQAAAAAUqu2iuc5jt0RwkUdWlFcqnUMAAAAAuo9fRAEAAAAAheJAFAAAAABQqLaO5gKNcu+991a8vbNOuwAAAACO4hdRAAAAAEChOBAFAAAAABSqraO53gF1yJAhqZ45c2aq6aYL5/Oks/mQNbcAAAAAdI1fRAEAAAAAheJAFAAAAABQKA5EAQAAAACFartzRP3yGVnnf/rtLutcvzzPieaUdc5nnvM6y++T9Xgu2QIAAABUh19EAQAAAACF4kAUAAAAAFCotovmuqzIZFa8NiuuWW2Utzt6Y/y3s0ulNOKSKHmes7P54Jf9AQAAANB9/CIKAAAAACgUB6IAAAAAgEK1dTQ3S7VdTquN8nZHEfHfZtao10mnWwAAAKD55PpFNITwZyGEZSGEV0MI/xlC6BdCmBBCeCWEsCaE8MMQQt9GDxYAAAAA0Pq6PBANIYyR9KeSZsQYp0o6TtKtkv5W0rdijBMl7ZJ0RyMHCgAAAABoD3mjucdLOjGE8J6k/pI2S/qEpM92/PuDku6VdF+9B9gMiohxFhH/bTadvbxnLfQAAAU8SURBVE6iswAAAED76vIX0RjjRkl/J+ktHT0A3SNpgaTdMcYjHXfbIGlMpceHEO4MIcwPIcyvz5ABAAAAAK0sTzR3qKSbJE2QdKqkAZJmVbhrrPT4GOP9McYZMcYZtQwUAAAAANAe8kRzPynpjRjjdkkKIfxE0qWShoQQju/4VXSspE3VLHju3LlVDrV38vhqOyt/ncwPAAAAoH3l6Zr7lqSLQwj9QwhB0lWSlkt6VtKnO+4zW9KjjRkiAAAAAKCd5DlH9BVJ/yVpoaSlHY+5X9JXJd0TQlgrabik7zZwnAAAAACANhFirHhqZ2MWFsJ2SQck7ShsoeitRoh5hsZjnqEIzDMUgXmGIjDPeodxMcaRXd2p0ANRSQohzKdxERqNeYYiMM9QBOYZisA8QxGYZ3B5zhEFAAAAAKBuOBAFAAAAABSqJw5E7++BZaL3YZ6hCMwzFIF5hiIwz1AE5hmSws8RBQAAAAD0bkRzAQAAAACFKvRANIRwbQhhVQhhbQjha0UuG+0thPBmCGFpCGFxCGF+x23DQghPhRDWdPx3aE+PE60lhPBACGFbCOFVu63ivApH/b8d+7ffhhA+0nMjRyvJmGf3hhA2duzTFocQrrN/+18d82xVCOH3embUaCUhhNNCCM+GEFaEEJaFEL7UcTv7M9RNJ/OM/RkqKuxANIRwnKR/lDRL0hRJnwkhTClq+egVPh5jnG5twb8maU6McaKkOR1/A9X4N0nXlt2WNa9mSZrY8b87Jd1X0BjR+v5NvzvPJOlbHfu06THGxyWp43PzVknndDzmnzo+X4HOHJH0lRjjZEkXS7qrYy6xP0M9Zc0zif0ZKijyF9GLJK2NMb4eY3xX0g8k3VTg8tH73CTpwY76QUk39+BY0IJijM9Jervs5qx5dZOkf49HvSxpSAjhlGJGilaWMc+y3CTpBzHGwzHGNySt1dHPVyBTjHFzjHFhR71P0gpJY8T+DHXUyTzLwv6slyvyQHSMpPX29wZ1PjmBakRJT4YQFoQQ7uy4bXSMcbN0dOcoaVSPjQ7tJGtesY9Dvd3dEYt8wE4tYJ6hJiGE8ZLOl/SK2J+hQcrmmcT+DBUUeSAaKtxGy17Uy2Uxxo/oaJzorhDCFT09IPQ67ONQT/dJOlPSdEmbJf19x+3MM3RbCGGgpB9L+nKMcW9nd61wG/MMuVSYZ+zPUFGRB6IbJJ1mf4+VtKnA5aONxRg3dfx3m6SHdTTasfWDKFHHf7f13AjRRrLmFfs41E2McWuM8f0Y439L+o6OxdWYZ+iWEEIfHT04+F6M8ScdN7M/Q11Vmmfsz5ClyAPReZImhhAmhBD66ujJyY8VuHy0qRDCgBDCoA9qSddIelVH59fsjrvNlvRoz4wQbSZrXj0m6X90dJu8WNKeDyJvQLXKzsf7Ax3dp0lH59mtIYQTQggTdLSZzG+KHh9aSwghSPqupBUxxv9j/8T+DHWTNc/YnyHL8UUtKMZ4JIRwt6QnJB0n6YEY47Kilo+2NlrSw0f3fzpe0vdjjL8MIcyT9KMQwh2S3pJ0Sw+OES0ohPCfkmZKGhFC2CDpG5K+qcrz6nFJ1+los4WDkm4vfMBoSRnzbGYIYbqOxtTelPQ/JSnGuCyE8CNJy3W0Q+VdMcb3e2LcaCmXSfqcpKUhhMUdt/1vsT9DfWXNs8+wP0MlIUai2AAAAACA4hQZzQUAAAAAgANRAAAAAECxOBAFAAAAABSKA1EAAAAAQKE4EAUAAAAAFIoDUQAAAABAoTgQBQAAAAAUigNRAAAAAECh/n+xbZDBgJeQ/gAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 1152x432 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
"output_type": "display_data"
}
],
"source": [
"filtered_image = np.zeros_like(img[..., 0])\n",
"# here we call the compiled stencil function\n",
"compiled_kernel(img=img, dst=filtered_image, w_2=0.5)\n",
"plt.imshow(filtered_image, cmap='gray');"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Digging into *pystencils*\n",
"\n",
"On our way we have created an ``ast``-object. We can inspect this, to see what *pystencils* actually does."
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"image/svg+xml": [
"<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n",
"<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.1//EN\"\n",
" \"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd\">\n",
"<!-- Generated by graphviz version 2.40.1 (20161225.0304)\n",
" -->\n",
"<!-- Title: %3 Pages: 1 -->\n",
"<svg width=\"684pt\" height=\"468pt\"\n",
" viewBox=\"0.00 0.00 684.00 467.74\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">\n",
"<g id=\"graph0\" class=\"graph\" transform=\"scale(.9826 .9826) rotate(0) translate(4 472)\">\n",
"<title>%3</title>\n",
"<polygon fill=\"#ffffff\" stroke=\"transparent\" points=\"-4,4 -4,-472 692.083,-472 692.083,4 -4,4\"/>\n",
"<!-- 140495254316984 -->\n",
"<g id=\"node1\" class=\"node\">\n",
"<title>140495254316984</title>\n",
"<ellipse fill=\"#a056db\" stroke=\"#000000\" cx=\"219.8449\" cy=\"-450\" rx=\"107.781\" ry=\"18\"/>\n",
"<text text-anchor=\"middle\" x=\"219.8449\" y=\"-446.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">Func: kernel (dst,img,w_2)</text>\n",
"<!-- 140495254318440 -->\n",
"<g id=\"node11\" class=\"node\">\n",
"<title>140495254318440</title>\n",
"<ellipse fill=\"#dbc256\" stroke=\"#000000\" cx=\"219.8449\" cy=\"-378\" rx=\"31.6951\" ry=\"18\"/>\n",
"<text text-anchor=\"middle\" x=\"219.8449\" y=\"-374.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">Block</text>\n",
"<!-- 140495254316984->140495254318440 -->\n",
"<g id=\"edge10\" class=\"edge\">\n",
"<title>140495254316984->140495254318440</title>\n",
"<path fill=\"none\" stroke=\"#000000\" d=\"M219.8449,-431.8314C219.8449,-424.131 219.8449,-414.9743 219.8449,-406.4166\"/>\n",
"<polygon fill=\"#000000\" stroke=\"#000000\" points=\"223.345,-406.4132 219.8449,-396.4133 216.345,-406.4133 223.345,-406.4132\"/>\n",
"<!-- 140495254317656 -->\n",
"<g id=\"node2\" class=\"node\">\n",
"<title>140495254317656</title>\n",
"<ellipse fill=\"#56db7f\" stroke=\"#000000\" cx=\"144.8449\" cy=\"-306\" rx=\"61.99\" ry=\"18\"/>\n",
"<text text-anchor=\"middle\" x=\"144.8449\" y=\"-302.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">_data_img_22</text>\n",
"<!-- 140495254316256 -->\n",
"<g id=\"node3\" class=\"node\">\n",
"<title>140495254316256</title>\n",
"<ellipse fill=\"#3498db\" stroke=\"#000000\" cx=\"295.8449\" cy=\"-306\" rx=\"70.6878\" ry=\"18\"/>\n",
"<text text-anchor=\"middle\" x=\"295.8449\" y=\"-302.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">Loop over dim 0</text>\n",
"<!-- 140495254316032 -->\n",
"<g id=\"node10\" class=\"node\">\n",
"<title>140495254316032</title>\n",
"<ellipse fill=\"#dbc256\" stroke=\"#000000\" cx=\"295.8449\" cy=\"-234\" rx=\"31.6951\" ry=\"18\"/>\n",
"<text text-anchor=\"middle\" x=\"295.8449\" y=\"-230.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">Block</text>\n",
"<!-- 140495254316256->140495254316032 -->\n",
"<g id=\"edge7\" class=\"edge\">\n",
"<title>140495254316256->140495254316032</title>\n",
"<path fill=\"none\" stroke=\"#000000\" d=\"M295.8449,-287.8314C295.8449,-280.131 295.8449,-270.9743 295.8449,-262.4166\"/>\n",
"<polygon fill=\"#000000\" stroke=\"#000000\" points=\"299.345,-262.4132 295.8449,-252.4133 292.345,-262.4133 299.345,-262.4132\"/>\n",
"<!-- 140495254318496 -->\n",
"<g id=\"node4\" class=\"node\">\n",
"<title>140495254318496</title>\n",
"<ellipse fill=\"#56db7f\" stroke=\"#000000\" cx=\"57.8449\" cy=\"-162\" rx=\"57.6901\" ry=\"18\"/>\n",
"<text text-anchor=\"middle\" x=\"57.8449\" y=\"-158.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">_data_dst_00</text>\n",
"<!-- 140495254316592 -->\n",
"<g id=\"node5\" class=\"node\">\n",
"<title>140495254316592</title>\n",
"<ellipse fill=\"#56db7f\" stroke=\"#000000\" cx=\"208.8449\" cy=\"-162\" rx=\"74.9875\" ry=\"18\"/>\n",
"<text text-anchor=\"middle\" x=\"208.8449\" y=\"-158.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">_data_img_22_01</text>\n",
"<!-- 140495254317320 -->\n",
"<g id=\"node6\" class=\"node\">\n",
"<title>140495254317320</title>\n",
"<ellipse fill=\"#56db7f\" stroke=\"#000000\" cx=\"383.8449\" cy=\"-162\" rx=\"81.7856\" ry=\"18\"/>\n",
"<text text-anchor=\"middle\" x=\"383.8449\" y=\"-158.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">_data_img_22_0m1</text>\n",
"<!-- 140495254318664 -->\n",
"<g id=\"node7\" class=\"node\">\n",
"<title>140495254318664</title>\n",
"<ellipse fill=\"#3498db\" stroke=\"#000000\" cx=\"554.8449\" cy=\"-162\" rx=\"70.6878\" ry=\"18\"/>\n",
"<text text-anchor=\"middle\" x=\"554.8449\" y=\"-158.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">Loop over dim 1</text>\n",
"<!-- 140495254318776 -->\n",
"<g id=\"node9\" class=\"node\">\n",
"<title>140495254318776</title>\n",
"<ellipse fill=\"#dbc256\" stroke=\"#000000\" cx=\"554.8449\" cy=\"-90\" rx=\"31.6951\" ry=\"18\"/>\n",
"<text text-anchor=\"middle\" x=\"554.8449\" y=\"-86.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">Block</text>\n",
"<!-- 140495254318664->140495254318776 -->\n",
"<g id=\"edge2\" class=\"edge\">\n",
"<title>140495254318664->140495254318776</title>\n",
"<path fill=\"none\" stroke=\"#000000\" d=\"M554.8449,-143.8314C554.8449,-136.131 554.8449,-126.9743 554.8449,-118.4166\"/>\n",
"<polygon fill=\"#000000\" stroke=\"#000000\" points=\"558.345,-118.4132 554.8449,-108.4133 551.345,-118.4133 558.345,-118.4132\"/>\n",
"<!-- 140495254317040 -->\n",
"<g id=\"node8\" class=\"node\">\n",
"<title>140495254317040</title>\n",
"<ellipse fill=\"#56db7f\" stroke=\"#000000\" cx=\"554.8449\" cy=\"-18\" rx=\"133.4768\" ry=\"18\"/>\n",
"<text text-anchor=\"middle\" x=\"554.8449\" y=\"-14.3\" font-family=\"Times,serif\" font-size=\"14.00\" fill=\"#000000\">_data_dst_00[_stride_dst_1*ctr_1]</text>\n",
"<!-- 140495254318776->140495254317040 -->\n",
"<g id=\"edge1\" class=\"edge\">\n",
"<title>140495254318776->140495254317040</title>\n",
"<path fill=\"none\" stroke=\"#000000\" d=\"M554.8449,-71.8314C554.8449,-64.131 554.8449,-54.9743 554.8449,-46.4166\"/>\n",
"<polygon fill=\"#000000\" stroke=\"#000000\" points=\"558.345,-46.4132 554.8449,-36.4133 551.345,-46.4133 558.345,-46.4132\"/>\n",
"<!-- 140495254316032->140495254318496 -->\n",
"<g id=\"edge3\" class=\"edge\">\n",
"<title>140495254316032->140495254318496</title>\n",
"<path fill=\"none\" stroke=\"#000000\" d=\"M267.6085,-225.4579C228.6723,-213.6789 157.8187,-192.2442 109.3243,-177.5736\"/>\n",
"<polygon fill=\"#000000\" stroke=\"#000000\" points=\"110.2227,-174.1888 99.6376,-174.6432 108.1957,-180.8889 110.2227,-174.1888\"/>\n",
"<!-- 140495254316032->140495254316592 -->\n",
"<g id=\"edge4\" class=\"edge\">\n",
"<title>140495254316032->140495254316592</title>\n",
"<path fill=\"none\" stroke=\"#000000\" d=\"M277.8184,-219.0816C266.2777,-209.5306 251.0436,-196.9231 237.8284,-185.9864\"/>\n",
"<polygon fill=\"#000000\" stroke=\"#000000\" points=\"239.8475,-183.1143 229.9121,-179.4349 235.3845,-188.507 239.8475,-183.1143\"/>\n",
"<!-- 140495254316032->140495254317320 -->\n",
"<g id=\"edge5\" class=\"edge\">\n",
"<title>140495254316032->140495254317320</title>\n",
"<path fill=\"none\" stroke=\"#000000\" d=\"M314.0785,-219.0816C325.7519,-209.5306 341.1611,-196.9231 354.5282,-185.9864\"/>\n",
"<polygon fill=\"#000000\" stroke=\"#000000\" points=\"357.0123,-188.4762 362.5355,-179.4349 352.5796,-183.0585 357.0123,-188.4762\"/>\n",
"<!-- 140495254316032->140495254318664 -->\n",
"<g id=\"edge6\" class=\"edge\">\n",
"<title>140495254316032->140495254318664</title>\n",
"<path fill=\"none\" stroke=\"#000000\" d=\"M324.552,-226.0196C365.9645,-214.5073 443.366,-192.9903 496.9349,-178.0985\"/>\n",
"<polygon fill=\"#000000\" stroke=\"#000000\" points=\"497.9488,-181.4495 506.646,-175.3989 496.0739,-174.7052 497.9488,-181.4495\"/>\n",
"<!-- 140495254318440->140495254317656 -->\n",
"<g id=\"edge8\" class=\"edge\">\n",
"<title>140495254318440->140495254317656</title>\n",
"<path fill=\"none\" stroke=\"#000000\" d=\"M203.571,-362.3771C193.8398,-353.0351 181.2651,-340.9635 170.2498,-330.3888\"/>\n",
"<polygon fill=\"#000000\" stroke=\"#000000\" points=\"172.5648,-327.7594 162.9271,-323.3589 167.7171,-332.8091 172.5648,-327.7594\"/>\n",
"<!-- 140495254318440->140495254316256 -->\n",
"<g id=\"edge9\" class=\"edge\">\n",
"<title>140495254318440->140495254316256</title>\n",
"<path fill=\"none\" stroke=\"#000000\" d=\"M236.3357,-362.3771C246.1257,-353.1023 258.7558,-341.137 269.86,-330.6172\"/>\n",
"<polygon fill=\"#000000\" stroke=\"#000000\" points=\"272.3977,-333.0344 277.2501,-323.6161 267.5835,-327.9527 272.3977,-333.0344\"/>\n",
"</g>\n",
"</g>\n",
"</svg>\n"
],
"text/plain": [
"<graphviz.files.Source at 0x7fc798393fd0>"
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ps.to_dot(ast, graph_style={'size': \"9.5,12.5\"})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"*pystencils* also builds a tree structure of the program, where each `Assignment` node internally again has a *sympy* AST which is not printed here. Out of this representation *C* code can be generated:"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<style>.highlight .hll { background-color: #ffffcc }\n",
".highlight { background: #f8f8f8; }\n",
".highlight .c { color: #408080; font-style: italic } /* Comment */\n",
".highlight .err { border: 1px solid #FF0000 } /* Error */\n",
".highlight .k { color: #008000; font-weight: bold } /* Keyword */\n",
".highlight .o { color: #666666 } /* Operator */\n",
".highlight .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
".highlight .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
".highlight .cp { color: #BC7A00 } /* Comment.Preproc */\n",
".highlight .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
".highlight .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
".highlight .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
".highlight .gd { color: #A00000 } /* Generic.Deleted */\n",
".highlight .ge { font-style: italic } /* Generic.Emph */\n",
".highlight .gr { color: #FF0000 } /* Generic.Error */\n",
".highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
".highlight .gi { color: #00A000 } /* Generic.Inserted */\n",
".highlight .go { color: #888888 } /* Generic.Output */\n",
".highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
".highlight .gs { font-weight: bold } /* Generic.Strong */\n",
".highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
".highlight .gt { color: #0044DD } /* Generic.Traceback */\n",
".highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
".highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
".highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
".highlight .kp { color: #008000 } /* Keyword.Pseudo */\n",
".highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
".highlight .kt { color: #B00040 } /* Keyword.Type */\n",
".highlight .m { color: #666666 } /* Literal.Number */\n",
".highlight .s { color: #BA2121 } /* Literal.String */\n",
".highlight .na { color: #7D9029 } /* Name.Attribute */\n",
".highlight .nb { color: #008000 } /* Name.Builtin */\n",
".highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
".highlight .no { color: #880000 } /* Name.Constant */\n",
".highlight .nd { color: #AA22FF } /* Name.Decorator */\n",
".highlight .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
".highlight .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
".highlight .nf { color: #0000FF } /* Name.Function */\n",
".highlight .nl { color: #A0A000 } /* Name.Label */\n",
".highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
".highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
".highlight .nv { color: #19177C } /* Name.Variable */\n",
".highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
".highlight .w { color: #bbbbbb } /* Text.Whitespace */\n",
".highlight .mb { color: #666666 } /* Literal.Number.Bin */\n",
".highlight .mf { color: #666666 } /* Literal.Number.Float */\n",
".highlight .mh { color: #666666 } /* Literal.Number.Hex */\n",
".highlight .mi { color: #666666 } /* Literal.Number.Integer */\n",
".highlight .mo { color: #666666 } /* Literal.Number.Oct */\n",
".highlight .sa { color: #BA2121 } /* Literal.String.Affix */\n",
".highlight .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
".highlight .sc { color: #BA2121 } /* Literal.String.Char */\n",
".highlight .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
".highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
".highlight .s2 { color: #BA2121 } /* Literal.String.Double */\n",
".highlight .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
".highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
".highlight .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
".highlight .sx { color: #008000 } /* Literal.String.Other */\n",
".highlight .sr { color: #BB6688 } /* Literal.String.Regex */\n",
".highlight .s1 { color: #BA2121 } /* Literal.String.Single */\n",
".highlight .ss { color: #19177C } /* Literal.String.Symbol */\n",
".highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
".highlight .fm { color: #0000FF } /* Name.Function.Magic */\n",
".highlight .vc { color: #19177C } /* Name.Variable.Class */\n",
".highlight .vg { color: #19177C } /* Name.Variable.Global */\n",
".highlight .vi { color: #19177C } /* Name.Variable.Instance */\n",
".highlight .vm { color: #19177C } /* Name.Variable.Magic */\n",
".highlight .il { color: #666666 } /* Literal.Number.Integer.Long */</style>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<div class=\"highlight\"><pre><span></span><span class=\"n\">FUNC_PREFIX</span> <span class=\"kt\">void</span> <span class=\"nf\">kernel</span><span class=\"p\">(</span><span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"n\">_data_dst</span><span class=\"p\">,</span> <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"k\">const</span> <span class=\"n\">_data_img</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_size_dst_0</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_size_dst_1</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_stride_dst_0</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_stride_dst_1</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_stride_img_0</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_stride_img_1</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_stride_img_2</span><span class=\"p\">,</span> <span class=\"kt\">double</span> <span class=\"n\">w_2</span><span class=\"p\">)</span>\n",
"<span class=\"p\">{</span>\n",
" <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"k\">const</span> <span class=\"n\">_data_img_22</span> <span class=\"o\">=</span> <span class=\"n\">_data_img</span> <span class=\"o\">+</span> <span class=\"mi\">2</span><span class=\"o\">*</span><span class=\"n\">_stride_img_2</span><span class=\"p\">;</span>\n",
" <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"kt\">int</span> <span class=\"n\">ctr_0</span> <span class=\"o\">=</span> <span class=\"mi\">1</span><span class=\"p\">;</span> <span class=\"n\">ctr_0</span> <span class=\"o\"><</span> <span class=\"n\">_size_dst_0</span> <span class=\"o\">-</span> <span class=\"mi\">1</span><span class=\"p\">;</span> <span class=\"n\">ctr_0</span> <span class=\"o\">+=</span> <span class=\"mi\">1</span><span class=\"p\">)</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"n\">_data_dst_00</span> <span class=\"o\">=</span> <span class=\"n\">_data_dst</span> <span class=\"o\">+</span> <span class=\"n\">_stride_dst_0</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span><span class=\"p\">;</span>\n",
" <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"k\">const</span> <span class=\"n\">_data_img_22_01</span> <span class=\"o\">=</span> <span class=\"n\">_stride_img_0</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">+</span> <span class=\"n\">_stride_img_0</span> <span class=\"o\">+</span> <span class=\"n\">_data_img_22</span><span class=\"p\">;</span>\n",
" <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"k\">const</span> <span class=\"n\">_data_img_22_0m1</span> <span class=\"o\">=</span> <span class=\"n\">_stride_img_0</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">-</span> <span class=\"n\">_stride_img_0</span> <span class=\"o\">+</span> <span class=\"n\">_data_img_22</span><span class=\"p\">;</span>\n",
" <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"kt\">int</span> <span class=\"n\">ctr_1</span> <span class=\"o\">=</span> <span class=\"mi\">1</span><span class=\"p\">;</span> <span class=\"n\">ctr_1</span> <span class=\"o\"><</span> <span class=\"n\">_size_dst_1</span> <span class=\"o\">-</span> <span class=\"mi\">1</span><span class=\"p\">;</span> <span class=\"n\">ctr_1</span> <span class=\"o\">+=</span> <span class=\"mi\">1</span><span class=\"p\">)</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"n\">_data_dst_00</span><span class=\"p\">[</span><span class=\"n\">_stride_dst_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"p\">((</span><span class=\"n\">w_2</span><span class=\"o\">*</span><span class=\"n\">_data_img_22_01</span><span class=\"p\">[</span><span class=\"n\">_stride_img_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"n\">w_2</span><span class=\"o\">*</span><span class=\"n\">_data_img_22_0m1</span><span class=\"p\">[</span><span class=\"n\">_stride_img_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"mf\">0.5</span><span class=\"o\">*</span><span class=\"n\">_data_img_22_01</span><span class=\"p\">[</span><span class=\"n\">_stride_img_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span> <span class=\"o\">+</span> <span class=\"n\">_stride_img_1</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"mf\">0.5</span><span class=\"o\">*</span><span class=\"n\">_data_img_22_0m1</span><span class=\"p\">[</span><span class=\"n\">_stride_img_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span> <span class=\"o\">+</span> <span class=\"n\">_stride_img_1</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"mf\">0.5</span><span class=\"o\">*</span><span class=\"n\">_data_img_22_0m1</span><span class=\"p\">[</span><span class=\"n\">_stride_img_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span> <span class=\"o\">-</span> <span class=\"n\">_stride_img_1</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"mf\">0.5</span><span class=\"o\">*</span><span class=\"n\">_data_img_22_01</span><span class=\"p\">[</span><span class=\"n\">_stride_img_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span> <span class=\"o\">-</span> <span class=\"n\">_stride_img_1</span><span class=\"p\">])</span><span class=\"o\">*</span><span class=\"p\">(</span><span class=\"n\">w_2</span><span class=\"o\">*</span><span class=\"n\">_data_img_22_01</span><span class=\"p\">[</span><span class=\"n\">_stride_img_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"n\">w_2</span><span class=\"o\">*</span><span class=\"n\">_data_img_22_0m1</span><span class=\"p\">[</span><span class=\"n\">_stride_img_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"mf\">0.5</span><span class=\"o\">*</span><span class=\"n\">_data_img_22_01</span><span class=\"p\">[</span><span class=\"n\">_stride_img_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span> <span class=\"o\">+</span> <span class=\"n\">_stride_img_1</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"mf\">0.5</span><span class=\"o\">*</span><span class=\"n\">_data_img_22_0m1</span><span class=\"p\">[</span><span class=\"n\">_stride_img_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span> <span class=\"o\">+</span> <span class=\"n\">_stride_img_1</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"mf\">0.5</span><span class=\"o\">*</span><span class=\"n\">_data_img_22_0m1</span><span class=\"p\">[</span><span class=\"n\">_stride_img_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span> <span class=\"o\">-</span> <span class=\"n\">_stride_img_1</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"mf\">0.5</span><span class=\"o\">*</span><span class=\"n\">_data_img_22_01</span><span class=\"p\">[</span><span class=\"n\">_stride_img_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span> <span class=\"o\">-</span> <span class=\"n\">_stride_img_1</span><span class=\"p\">]));</span>\n",
" <span class=\"p\">}</span>\n",
" <span class=\"p\">}</span>\n",
"<span class=\"p\">}</span>\n",
"</pre></div>\n"
],
"text/plain": [
"FUNC_PREFIX void kernel(double * RESTRICT _data_dst, double * RESTRICT const _data_img, int64_t const _size_dst_0, int64_t const _size_dst_1, int64_t const _stride_dst_0, int64_t const _stride_dst_1, int64_t const _stride_img_0, int64_t const _stride_img_1, int64_t const _stride_img_2, double w_2)\n",
" double * RESTRICT const _data_img_22 = _data_img + 2*_stride_img_2;\n",
" for (int ctr_0 = 1; ctr_0 < _size_dst_0 - 1; ctr_0 += 1)\n",
" double * RESTRICT _data_dst_00 = _data_dst + _stride_dst_0*ctr_0;\n",
" double * RESTRICT const _data_img_22_01 = _stride_img_0*ctr_0 + _stride_img_0 + _data_img_22;\n",
" double * RESTRICT const _data_img_22_0m1 = _stride_img_0*ctr_0 - _stride_img_0 + _data_img_22;\n",
" for (int ctr_1 = 1; ctr_1 < _size_dst_1 - 1; ctr_1 += 1)\n",
" _data_dst_00[_stride_dst_1*ctr_1] = ((w_2*_data_img_22_01[_stride_img_1*ctr_1] - w_2*_data_img_22_0m1[_stride_img_1*ctr_1] - 0.5*_data_img_22_01[_stride_img_1*ctr_1 + _stride_img_1] - 0.5*_data_img_22_0m1[_stride_img_1*ctr_1 + _stride_img_1] - 0.5*_data_img_22_0m1[_stride_img_1*ctr_1 - _stride_img_1] + 0.5*_data_img_22_01[_stride_img_1*ctr_1 - _stride_img_1])*(w_2*_data_img_22_01[_stride_img_1*ctr_1] - w_2*_data_img_22_0m1[_stride_img_1*ctr_1] - 0.5*_data_img_22_01[_stride_img_1*ctr_1 + _stride_img_1] - 0.5*_data_img_22_0m1[_stride_img_1*ctr_1 + _stride_img_1] - 0.5*_data_img_22_0m1[_stride_img_1*ctr_1 - _stride_img_1] + 0.5*_data_img_22_01[_stride_img_1*ctr_1 - _stride_img_1]));\n",
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
" }\n",
" }\n",
"}"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ps.show_code(ast)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Behind the scenes this code is compiled into a shared library and made available as a Python function. Before compiling this function we can modify the AST object, for example to parallelize it with OpenMP."
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<style>.highlight .hll { background-color: #ffffcc }\n",
".highlight { background: #f8f8f8; }\n",
".highlight .c { color: #408080; font-style: italic } /* Comment */\n",
".highlight .err { border: 1px solid #FF0000 } /* Error */\n",
".highlight .k { color: #008000; font-weight: bold } /* Keyword */\n",
".highlight .o { color: #666666 } /* Operator */\n",
".highlight .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
".highlight .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
".highlight .cp { color: #BC7A00 } /* Comment.Preproc */\n",
".highlight .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
".highlight .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
".highlight .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
".highlight .gd { color: #A00000 } /* Generic.Deleted */\n",
".highlight .ge { font-style: italic } /* Generic.Emph */\n",
".highlight .gr { color: #FF0000 } /* Generic.Error */\n",
".highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
".highlight .gi { color: #00A000 } /* Generic.Inserted */\n",
".highlight .go { color: #888888 } /* Generic.Output */\n",
".highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
".highlight .gs { font-weight: bold } /* Generic.Strong */\n",
".highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
".highlight .gt { color: #0044DD } /* Generic.Traceback */\n",
".highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
".highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
".highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
".highlight .kp { color: #008000 } /* Keyword.Pseudo */\n",
".highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
".highlight .kt { color: #B00040 } /* Keyword.Type */\n",
".highlight .m { color: #666666 } /* Literal.Number */\n",
".highlight .s { color: #BA2121 } /* Literal.String */\n",
".highlight .na { color: #7D9029 } /* Name.Attribute */\n",
".highlight .nb { color: #008000 } /* Name.Builtin */\n",
".highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
".highlight .no { color: #880000 } /* Name.Constant */\n",
".highlight .nd { color: #AA22FF } /* Name.Decorator */\n",
".highlight .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
".highlight .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
".highlight .nf { color: #0000FF } /* Name.Function */\n",
".highlight .nl { color: #A0A000 } /* Name.Label */\n",
".highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
".highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
".highlight .nv { color: #19177C } /* Name.Variable */\n",
".highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
".highlight .w { color: #bbbbbb } /* Text.Whitespace */\n",
".highlight .mb { color: #666666 } /* Literal.Number.Bin */\n",
".highlight .mf { color: #666666 } /* Literal.Number.Float */\n",
".highlight .mh { color: #666666 } /* Literal.Number.Hex */\n",
".highlight .mi { color: #666666 } /* Literal.Number.Integer */\n",
".highlight .mo { color: #666666 } /* Literal.Number.Oct */\n",
".highlight .sa { color: #BA2121 } /* Literal.String.Affix */\n",
".highlight .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
".highlight .sc { color: #BA2121 } /* Literal.String.Char */\n",
".highlight .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
".highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
".highlight .s2 { color: #BA2121 } /* Literal.String.Double */\n",
".highlight .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
".highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
".highlight .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
".highlight .sx { color: #008000 } /* Literal.String.Other */\n",
".highlight .sr { color: #BB6688 } /* Literal.String.Regex */\n",
".highlight .s1 { color: #BA2121 } /* Literal.String.Single */\n",
".highlight .ss { color: #19177C } /* Literal.String.Symbol */\n",
".highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
".highlight .fm { color: #0000FF } /* Name.Function.Magic */\n",
".highlight .vc { color: #19177C } /* Name.Variable.Class */\n",
".highlight .vg { color: #19177C } /* Name.Variable.Global */\n",
".highlight .vi { color: #19177C } /* Name.Variable.Instance */\n",
".highlight .vm { color: #19177C } /* Name.Variable.Magic */\n",
".highlight .il { color: #666666 } /* Literal.Number.Integer.Long */</style>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<div class=\"highlight\"><pre><span></span><span class=\"n\">FUNC_PREFIX</span> <span class=\"kt\">void</span> <span class=\"nf\">kernel</span><span class=\"p\">(</span><span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"n\">_data_dst</span><span class=\"p\">,</span> <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"k\">const</span> <span class=\"n\">_data_img</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_size_dst_0</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_size_dst_1</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_stride_dst_0</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_stride_dst_1</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_stride_img_0</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_stride_img_1</span><span class=\"p\">,</span> <span class=\"kt\">int64_t</span> <span class=\"k\">const</span> <span class=\"n\">_stride_img_2</span><span class=\"p\">,</span> <span class=\"kt\">double</span> <span class=\"n\">w_2</span><span class=\"p\">)</span>\n",
"<span class=\"p\">{</span>\n",
" <span class=\"cp\">#pragma omp parallel num_threads(2)</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"k\">const</span> <span class=\"n\">_data_img_22</span> <span class=\"o\">=</span> <span class=\"n\">_data_img</span> <span class=\"o\">+</span> <span class=\"mi\">2</span><span class=\"o\">*</span><span class=\"n\">_stride_img_2</span><span class=\"p\">;</span>\n",
" <span class=\"cp\">#pragma omp for schedule(static)</span>\n",
" <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"kt\">int</span> <span class=\"n\">ctr_0</span> <span class=\"o\">=</span> <span class=\"mi\">1</span><span class=\"p\">;</span> <span class=\"n\">ctr_0</span> <span class=\"o\"><</span> <span class=\"n\">_size_dst_0</span> <span class=\"o\">-</span> <span class=\"mi\">1</span><span class=\"p\">;</span> <span class=\"n\">ctr_0</span> <span class=\"o\">+=</span> <span class=\"mi\">1</span><span class=\"p\">)</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"n\">_data_dst_00</span> <span class=\"o\">=</span> <span class=\"n\">_data_dst</span> <span class=\"o\">+</span> <span class=\"n\">_stride_dst_0</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span><span class=\"p\">;</span>\n",
" <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"k\">const</span> <span class=\"n\">_data_img_22_01</span> <span class=\"o\">=</span> <span class=\"n\">_stride_img_0</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">+</span> <span class=\"n\">_stride_img_0</span> <span class=\"o\">+</span> <span class=\"n\">_data_img_22</span><span class=\"p\">;</span>\n",
" <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"k\">const</span> <span class=\"n\">_data_img_22_0m1</span> <span class=\"o\">=</span> <span class=\"n\">_stride_img_0</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">-</span> <span class=\"n\">_stride_img_0</span> <span class=\"o\">+</span> <span class=\"n\">_data_img_22</span><span class=\"p\">;</span>\n",
" <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"kt\">int</span> <span class=\"n\">ctr_1</span> <span class=\"o\">=</span> <span class=\"mi\">1</span><span class=\"p\">;</span> <span class=\"n\">ctr_1</span> <span class=\"o\"><</span> <span class=\"n\">_size_dst_1</span> <span class=\"o\">-</span> <span class=\"mi\">1</span><span class=\"p\">;</span> <span class=\"n\">ctr_1</span> <span class=\"o\">+=</span> <span class=\"mi\">1</span><span class=\"p\">)</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"n\">_data_dst_00</span><span class=\"p\">[</span><span class=\"n\">_stride_dst_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"p\">((</span><span class=\"n\">w_2</span><span class=\"o\">*</span><span class=\"n\">_data_img_22_01</span><span class=\"p\">[</span><span class=\"n\">_stride_img_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"n\">w_2</span><span class=\"o\">*</span><span class=\"n\">_data_img_22_0m1</span><span class=\"p\">[</span><span class=\"n\">_stride_img_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"mf\">0.5</span><span class=\"o\">*</span><span class=\"n\">_data_img_22_01</span><span class=\"p\">[</span><span class=\"n\">_stride_img_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span> <span class=\"o\">+</span> <span class=\"n\">_stride_img_1</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"mf\">0.5</span><span class=\"o\">*</span><span class=\"n\">_data_img_22_0m1</span><span class=\"p\">[</span><span class=\"n\">_stride_img_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span> <span class=\"o\">+</span> <span class=\"n\">_stride_img_1</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"mf\">0.5</span><span class=\"o\">*</span><span class=\"n\">_data_img_22_0m1</span><span class=\"p\">[</span><span class=\"n\">_stride_img_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span> <span class=\"o\">-</span> <span class=\"n\">_stride_img_1</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"mf\">0.5</span><span class=\"o\">*</span><span class=\"n\">_data_img_22_01</span><span class=\"p\">[</span><span class=\"n\">_stride_img_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span> <span class=\"o\">-</span> <span class=\"n\">_stride_img_1</span><span class=\"p\">])</span><span class=\"o\">*</span><span class=\"p\">(</span><span class=\"n\">w_2</span><span class=\"o\">*</span><span class=\"n\">_data_img_22_01</span><span class=\"p\">[</span><span class=\"n\">_stride_img_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"n\">w_2</span><span class=\"o\">*</span><span class=\"n\">_data_img_22_0m1</span><span class=\"p\">[</span><span class=\"n\">_stride_img_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"mf\">0.5</span><span class=\"o\">*</span><span class=\"n\">_data_img_22_01</span><span class=\"p\">[</span><span class=\"n\">_stride_img_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span> <span class=\"o\">+</span> <span class=\"n\">_stride_img_1</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"mf\">0.5</span><span class=\"o\">*</span><span class=\"n\">_data_img_22_0m1</span><span class=\"p\">[</span><span class=\"n\">_stride_img_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span> <span class=\"o\">+</span> <span class=\"n\">_stride_img_1</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"mf\">0.5</span><span class=\"o\">*</span><span class=\"n\">_data_img_22_0m1</span><span class=\"p\">[</span><span class=\"n\">_stride_img_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span> <span class=\"o\">-</span> <span class=\"n\">_stride_img_1</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"mf\">0.5</span><span class=\"o\">*</span><span class=\"n\">_data_img_22_01</span><span class=\"p\">[</span><span class=\"n\">_stride_img_1</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span> <span class=\"o\">-</span> <span class=\"n\">_stride_img_1</span><span class=\"p\">]));</span>\n",
" <span class=\"p\">}</span>\n",
" <span class=\"p\">}</span>\n",
" <span class=\"p\">}</span>\n",
"<span class=\"p\">}</span>\n",
"</pre></div>\n"
],
"text/plain": [
"FUNC_PREFIX void kernel(double * RESTRICT _data_dst, double * RESTRICT const _data_img, int64_t const _size_dst_0, int64_t const _size_dst_1, int64_t const _stride_dst_0, int64_t const _stride_dst_1, int64_t const _stride_img_0, int64_t const _stride_img_1, int64_t const _stride_img_2, double w_2)\n",
"{\n",
" #pragma omp parallel num_threads(2)\n",
" {\n",
" double * RESTRICT const _data_img_22 = _data_img + 2*_stride_img_2;\n",
" #pragma omp for schedule(static)\n",
" for (int ctr_0 = 1; ctr_0 < _size_dst_0 - 1; ctr_0 += 1)\n",
" double * RESTRICT _data_dst_00 = _data_dst + _stride_dst_0*ctr_0;\n",
" double * RESTRICT const _data_img_22_01 = _stride_img_0*ctr_0 + _stride_img_0 + _data_img_22;\n",
" double * RESTRICT const _data_img_22_0m1 = _stride_img_0*ctr_0 - _stride_img_0 + _data_img_22;\n",
" for (int ctr_1 = 1; ctr_1 < _size_dst_1 - 1; ctr_1 += 1)\n",
" _data_dst_00[_stride_dst_1*ctr_1] = ((w_2*_data_img_22_01[_stride_img_1*ctr_1] - w_2*_data_img_22_0m1[_stride_img_1*ctr_1] - 0.5*_data_img_22_01[_stride_img_1*ctr_1 + _stride_img_1] - 0.5*_data_img_22_0m1[_stride_img_1*ctr_1 + _stride_img_1] - 0.5*_data_img_22_0m1[_stride_img_1*ctr_1 - _stride_img_1] + 0.5*_data_img_22_01[_stride_img_1*ctr_1 - _stride_img_1])*(w_2*_data_img_22_01[_stride_img_1*ctr_1] - w_2*_data_img_22_0m1[_stride_img_1*ctr_1] - 0.5*_data_img_22_01[_stride_img_1*ctr_1 + _stride_img_1] - 0.5*_data_img_22_0m1[_stride_img_1*ctr_1 + _stride_img_1] - 0.5*_data_img_22_0m1[_stride_img_1*ctr_1 - _stride_img_1] + 0.5*_data_img_22_01[_stride_img_1*ctr_1 - _stride_img_1]));\n",
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
" }\n",
" }\n",
" }\n",
"}"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ast = ps.create_kernel(update_rule)\n",
"ps.cpu.add_openmp(ast, num_threads=2)\n",
"ps.show_code(ast)"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"loops = list(ast.atoms(ps.astnodes.LoopOverCoordinate))\n",
"l1 = loops[0]\n",
"l1.prefix_lines.append(\"#pragma someting\")\n",
"l1.is_outermost_loop"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Fixed array sizes\n",
"\n",
"Since we already know the arrays to which the kernel should be applied, we can \n",
"create *Field* objects with fixed size, based on a numpy array:"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<style>.highlight .hll { background-color: #ffffcc }\n",
".highlight { background: #f8f8f8; }\n",
".highlight .c { color: #408080; font-style: italic } /* Comment */\n",
".highlight .err { border: 1px solid #FF0000 } /* Error */\n",
".highlight .k { color: #008000; font-weight: bold } /* Keyword */\n",
".highlight .o { color: #666666 } /* Operator */\n",
".highlight .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
".highlight .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
".highlight .cp { color: #BC7A00 } /* Comment.Preproc */\n",
".highlight .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
".highlight .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
".highlight .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
".highlight .gd { color: #A00000 } /* Generic.Deleted */\n",
".highlight .ge { font-style: italic } /* Generic.Emph */\n",
".highlight .gr { color: #FF0000 } /* Generic.Error */\n",
".highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
".highlight .gi { color: #00A000 } /* Generic.Inserted */\n",
".highlight .go { color: #888888 } /* Generic.Output */\n",
".highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
".highlight .gs { font-weight: bold } /* Generic.Strong */\n",
".highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
".highlight .gt { color: #0044DD } /* Generic.Traceback */\n",
".highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
".highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
".highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
".highlight .kp { color: #008000 } /* Keyword.Pseudo */\n",
".highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
".highlight .kt { color: #B00040 } /* Keyword.Type */\n",
".highlight .m { color: #666666 } /* Literal.Number */\n",
".highlight .s { color: #BA2121 } /* Literal.String */\n",
".highlight .na { color: #7D9029 } /* Name.Attribute */\n",
".highlight .nb { color: #008000 } /* Name.Builtin */\n",
".highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
".highlight .no { color: #880000 } /* Name.Constant */\n",
".highlight .nd { color: #AA22FF } /* Name.Decorator */\n",
".highlight .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
".highlight .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
".highlight .nf { color: #0000FF } /* Name.Function */\n",
".highlight .nl { color: #A0A000 } /* Name.Label */\n",
".highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
".highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
".highlight .nv { color: #19177C } /* Name.Variable */\n",
".highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
".highlight .w { color: #bbbbbb } /* Text.Whitespace */\n",
".highlight .mb { color: #666666 } /* Literal.Number.Bin */\n",
".highlight .mf { color: #666666 } /* Literal.Number.Float */\n",
".highlight .mh { color: #666666 } /* Literal.Number.Hex */\n",
".highlight .mi { color: #666666 } /* Literal.Number.Integer */\n",
".highlight .mo { color: #666666 } /* Literal.Number.Oct */\n",
".highlight .sa { color: #BA2121 } /* Literal.String.Affix */\n",
".highlight .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
".highlight .sc { color: #BA2121 } /* Literal.String.Char */\n",
".highlight .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
".highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
".highlight .s2 { color: #BA2121 } /* Literal.String.Double */\n",
".highlight .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
".highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
".highlight .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
".highlight .sx { color: #008000 } /* Literal.String.Other */\n",
".highlight .sr { color: #BB6688 } /* Literal.String.Regex */\n",
".highlight .s1 { color: #BA2121 } /* Literal.String.Single */\n",
".highlight .ss { color: #19177C } /* Literal.String.Symbol */\n",
".highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
".highlight .fm { color: #0000FF } /* Name.Function.Magic */\n",
".highlight .vc { color: #19177C } /* Name.Variable.Class */\n",
".highlight .vg { color: #19177C } /* Name.Variable.Global */\n",
".highlight .vi { color: #19177C } /* Name.Variable.Instance */\n",
".highlight .vm { color: #19177C } /* Name.Variable.Magic */\n",
".highlight .il { color: #666666 } /* Literal.Number.Integer.Long */</style>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<div class=\"highlight\"><pre><span></span><span class=\"n\">FUNC_PREFIX</span> <span class=\"kt\">void</span> <span class=\"nf\">kernel</span><span class=\"p\">(</span><span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"k\">const</span> <span class=\"n\">_data_I</span><span class=\"p\">,</span> <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"n\">_data_dst</span><span class=\"p\">)</span>\n",
"<span class=\"p\">{</span>\n",
" <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"k\">const</span> <span class=\"n\">_data_I_21</span> <span class=\"o\">=</span> <span class=\"n\">_data_I</span> <span class=\"o\">+</span> <span class=\"mi\">1</span><span class=\"p\">;</span>\n",
" <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"kt\">int</span> <span class=\"n\">ctr_0</span> <span class=\"o\">=</span> <span class=\"mi\">1</span><span class=\"p\">;</span> <span class=\"n\">ctr_0</span> <span class=\"o\"><</span> <span class=\"mi\">81</span><span class=\"p\">;</span> <span class=\"n\">ctr_0</span> <span class=\"o\">+=</span> <span class=\"mi\">1</span><span class=\"p\">)</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"n\">_data_dst_00</span> <span class=\"o\">=</span> <span class=\"n\">_data_dst</span> <span class=\"o\">+</span> <span class=\"mi\">290</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span><span class=\"p\">;</span>\n",
" <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"k\">const</span> <span class=\"n\">_data_I_21_01</span> <span class=\"o\">=</span> <span class=\"n\">_data_I_21</span> <span class=\"o\">+</span> <span class=\"mi\">1160</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">+</span> <span class=\"mi\">1160</span><span class=\"p\">;</span>\n",
" <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"k\">const</span> <span class=\"n\">_data_I_21_0m1</span> <span class=\"o\">=</span> <span class=\"n\">_data_I_21</span> <span class=\"o\">+</span> <span class=\"mi\">1160</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">-</span> <span class=\"mi\">1160</span><span class=\"p\">;</span>\n",
" <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"kt\">int</span> <span class=\"n\">ctr_1</span> <span class=\"o\">=</span> <span class=\"mi\">1</span><span class=\"p\">;</span> <span class=\"n\">ctr_1</span> <span class=\"o\"><</span> <span class=\"mi\">289</span><span class=\"p\">;</span> <span class=\"n\">ctr_1</span> <span class=\"o\">+=</span> <span class=\"mi\">1</span><span class=\"p\">)</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"n\">_data_dst_00</span><span class=\"p\">[</span><span class=\"n\">ctr_1</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"o\">-</span><span class=\"mi\">2</span><span class=\"o\">*</span><span class=\"n\">_data_I_21_0m1</span><span class=\"p\">[</span><span class=\"mi\">4</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"mi\">2</span><span class=\"o\">*</span><span class=\"n\">_data_I_21_01</span><span class=\"p\">[</span><span class=\"mi\">4</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"n\">_data_I_21_01</span><span class=\"p\">[</span><span class=\"mi\">4</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span> <span class=\"o\">+</span> <span class=\"mi\">4</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"n\">_data_I_21_01</span><span class=\"p\">[</span><span class=\"mi\">4</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span> <span class=\"o\">-</span> <span class=\"mi\">4</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"n\">_data_I_21_0m1</span><span class=\"p\">[</span><span class=\"mi\">4</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span> <span class=\"o\">+</span> <span class=\"mi\">4</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"n\">_data_I_21_0m1</span><span class=\"p\">[</span><span class=\"mi\">4</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span> <span class=\"o\">-</span> <span class=\"mi\">4</span><span class=\"p\">];</span>\n",
" <span class=\"p\">}</span>\n",
" <span class=\"p\">}</span>\n",
"<span class=\"p\">}</span>\n",
"</pre></div>\n"
],
"text/plain": [
"FUNC_PREFIX void kernel(double * RESTRICT const _data_I, double * RESTRICT _data_dst)\n",
" double * RESTRICT const _data_I_21 = _data_I + 1;\n",
" for (int ctr_0 = 1; ctr_0 < 81; ctr_0 += 1)\n",
" {\n",
" double * RESTRICT _data_dst_00 = _data_dst + 290*ctr_0;\n",
" double * RESTRICT const _data_I_21_01 = _data_I_21 + 1160*ctr_0 + 1160;\n",
" double * RESTRICT const _data_I_21_0m1 = _data_I_21 + 1160*ctr_0 - 1160;\n",
" for (int ctr_1 = 1; ctr_1 < 289; ctr_1 += 1)\n",
" {\n",
" _data_dst_00[ctr_1] = -2*_data_I_21_0m1[4*ctr_1] + 2*_data_I_21_01[4*ctr_1] - _data_I_21_01[4*ctr_1 + 4] + _data_I_21_01[4*ctr_1 - 4] - _data_I_21_0m1[4*ctr_1 + 4] - _data_I_21_0m1[4*ctr_1 - 4];\n",
" }\n",
" }\n",
"}"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"img_field, dst_field = ps.fields(\"I(4), dst : [2D]\", I=img.astype(np.double), dst=filtered_image)\n",
"\n",
"sobel_x = -2 * img_field[-1,0](1) - img_field[-1,-1](1) - img_field[-1, +1](1) \\\n",
" +2 * img_field[+1,0](1) + img_field[+1,-1](1) - img_field[+1, +1](1)\n",
"update_rule = ps.Assignment(dst_field[0,0], sobel_x)\n",
"\n",
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
"ps.show_code(ast)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Compare this code to the version above. In this code the loop bounds and array offsets are constants, which usually leads to faster kernels."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Running on GPU\n",
"\n",
"If you have a CUDA enabled graphics card and [pycuda](https://mathema.tician.de/software/pycuda/) installed, *pystencils* can run your kernel on the GPU as well. You can find more details about this in the GPU tutorial."
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"gpu_ast = create_kernel(update_rule, target='gpu', gpu_indexing=ps.gpucuda.indexing.BlockIndexing, \n",
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
" gpu_indexing_params={'blockSize': (8,8,4)})"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<style>.highlight .hll { background-color: #ffffcc }\n",
".highlight { background: #f8f8f8; }\n",
".highlight .c { color: #408080; font-style: italic } /* Comment */\n",
".highlight .err { border: 1px solid #FF0000 } /* Error */\n",
".highlight .k { color: #008000; font-weight: bold } /* Keyword */\n",
".highlight .o { color: #666666 } /* Operator */\n",
".highlight .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
".highlight .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
".highlight .cp { color: #BC7A00 } /* Comment.Preproc */\n",
".highlight .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
".highlight .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
".highlight .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
".highlight .gd { color: #A00000 } /* Generic.Deleted */\n",
".highlight .ge { font-style: italic } /* Generic.Emph */\n",
".highlight .gr { color: #FF0000 } /* Generic.Error */\n",
".highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
".highlight .gi { color: #00A000 } /* Generic.Inserted */\n",
".highlight .go { color: #888888 } /* Generic.Output */\n",
".highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
".highlight .gs { font-weight: bold } /* Generic.Strong */\n",
".highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
".highlight .gt { color: #0044DD } /* Generic.Traceback */\n",
".highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
".highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
".highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
".highlight .kp { color: #008000 } /* Keyword.Pseudo */\n",
".highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
".highlight .kt { color: #B00040 } /* Keyword.Type */\n",
".highlight .m { color: #666666 } /* Literal.Number */\n",
".highlight .s { color: #BA2121 } /* Literal.String */\n",
".highlight .na { color: #7D9029 } /* Name.Attribute */\n",
".highlight .nb { color: #008000 } /* Name.Builtin */\n",
".highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
".highlight .no { color: #880000 } /* Name.Constant */\n",
".highlight .nd { color: #AA22FF } /* Name.Decorator */\n",
".highlight .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
".highlight .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
".highlight .nf { color: #0000FF } /* Name.Function */\n",
".highlight .nl { color: #A0A000 } /* Name.Label */\n",
".highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
".highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
".highlight .nv { color: #19177C } /* Name.Variable */\n",
".highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
".highlight .w { color: #bbbbbb } /* Text.Whitespace */\n",
".highlight .mb { color: #666666 } /* Literal.Number.Bin */\n",
".highlight .mf { color: #666666 } /* Literal.Number.Float */\n",
".highlight .mh { color: #666666 } /* Literal.Number.Hex */\n",
".highlight .mi { color: #666666 } /* Literal.Number.Integer */\n",
".highlight .mo { color: #666666 } /* Literal.Number.Oct */\n",
".highlight .sa { color: #BA2121 } /* Literal.String.Affix */\n",
".highlight .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
".highlight .sc { color: #BA2121 } /* Literal.String.Char */\n",
".highlight .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
".highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
".highlight .s2 { color: #BA2121 } /* Literal.String.Double */\n",
".highlight .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
".highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
".highlight .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
".highlight .sx { color: #008000 } /* Literal.String.Other */\n",
".highlight .sr { color: #BB6688 } /* Literal.String.Regex */\n",
".highlight .s1 { color: #BA2121 } /* Literal.String.Single */\n",
".highlight .ss { color: #19177C } /* Literal.String.Symbol */\n",
".highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
".highlight .fm { color: #0000FF } /* Name.Function.Magic */\n",
".highlight .vc { color: #19177C } /* Name.Variable.Class */\n",
".highlight .vg { color: #19177C } /* Name.Variable.Global */\n",
".highlight .vi { color: #19177C } /* Name.Variable.Instance */\n",
".highlight .vm { color: #19177C } /* Name.Variable.Magic */\n",
".highlight .il { color: #666666 } /* Literal.Number.Integer.Long */</style>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<div class=\"highlight\"><pre><span></span><span class=\"n\">FUNC_PREFIX</span> <span class=\"nf\">__launch_bounds__</span><span class=\"p\">(</span><span class=\"mi\">256</span><span class=\"p\">)</span> <span class=\"kt\">void</span> <span class=\"n\">kernel</span><span class=\"p\">(</span><span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"k\">const</span> <span class=\"n\">_data_I</span><span class=\"p\">,</span> <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"n\">_data_dst</span><span class=\"p\">)</span>\n",
"<span class=\"p\">{</span>\n",
" <span class=\"k\">if</span> <span class=\"p\">(</span><span class=\"n\">blockDim</span><span class=\"p\">.</span><span class=\"n\">x</span><span class=\"o\">*</span><span class=\"n\">blockIdx</span><span class=\"p\">.</span><span class=\"n\">x</span> <span class=\"o\">+</span> <span class=\"n\">threadIdx</span><span class=\"p\">.</span><span class=\"n\">x</span> <span class=\"o\">+</span> <span class=\"mi\">1</span> <span class=\"o\"><</span> <span class=\"mi\">81</span> <span class=\"o\">&&</span> <span class=\"n\">blockDim</span><span class=\"p\">.</span><span class=\"n\">y</span><span class=\"o\">*</span><span class=\"n\">blockIdx</span><span class=\"p\">.</span><span class=\"n\">y</span> <span class=\"o\">+</span> <span class=\"n\">threadIdx</span><span class=\"p\">.</span><span class=\"n\">y</span> <span class=\"o\">+</span> <span class=\"mi\">1</span> <span class=\"o\"><</span> <span class=\"mi\">289</span><span class=\"p\">)</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"k\">const</span> <span class=\"kt\">int64_t</span> <span class=\"n\">ctr_0</span> <span class=\"o\">=</span> <span class=\"n\">blockDim</span><span class=\"p\">.</span><span class=\"n\">x</span><span class=\"o\">*</span><span class=\"n\">blockIdx</span><span class=\"p\">.</span><span class=\"n\">x</span> <span class=\"o\">+</span> <span class=\"n\">threadIdx</span><span class=\"p\">.</span><span class=\"n\">x</span> <span class=\"o\">+</span> <span class=\"mi\">1</span><span class=\"p\">;</span>\n",
" <span class=\"k\">const</span> <span class=\"kt\">int64_t</span> <span class=\"n\">ctr_1</span> <span class=\"o\">=</span> <span class=\"n\">blockDim</span><span class=\"p\">.</span><span class=\"n\">y</span><span class=\"o\">*</span><span class=\"n\">blockIdx</span><span class=\"p\">.</span><span class=\"n\">y</span> <span class=\"o\">+</span> <span class=\"n\">threadIdx</span><span class=\"p\">.</span><span class=\"n\">y</span> <span class=\"o\">+</span> <span class=\"mi\">1</span><span class=\"p\">;</span>\n",
" <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"n\">_data_dst_10</span> <span class=\"o\">=</span> <span class=\"n\">_data_dst</span> <span class=\"o\">+</span> <span class=\"n\">ctr_1</span><span class=\"p\">;</span>\n",
" <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"k\">const</span> <span class=\"n\">_data_I_11_21</span> <span class=\"o\">=</span> <span class=\"n\">_data_I</span> <span class=\"o\">+</span> <span class=\"mi\">4</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span> <span class=\"o\">+</span> <span class=\"mi\">5</span><span class=\"p\">;</span>\n",
" <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"k\">const</span> <span class=\"n\">_data_I_1m1_21</span> <span class=\"o\">=</span> <span class=\"n\">_data_I</span> <span class=\"o\">+</span> <span class=\"mi\">4</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span> <span class=\"o\">-</span> <span class=\"mi\">3</span><span class=\"p\">;</span>\n",
" <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"k\">const</span> <span class=\"n\">_data_I_10_21</span> <span class=\"o\">=</span> <span class=\"n\">_data_I</span> <span class=\"o\">+</span> <span class=\"mi\">4</span><span class=\"o\">*</span><span class=\"n\">ctr_1</span> <span class=\"o\">+</span> <span class=\"mi\">1</span><span class=\"p\">;</span>\n",
" <span class=\"n\">_data_dst_10</span><span class=\"p\">[</span><span class=\"mi\">290</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"o\">-</span><span class=\"mi\">2</span><span class=\"o\">*</span><span class=\"n\">_data_I_10_21</span><span class=\"p\">[</span><span class=\"mi\">1160</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">-</span> <span class=\"mi\">1160</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"mi\">2</span><span class=\"o\">*</span><span class=\"n\">_data_I_10_21</span><span class=\"p\">[</span><span class=\"mi\">1160</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">+</span> <span class=\"mi\">1160</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"n\">_data_I_11_21</span><span class=\"p\">[</span><span class=\"mi\">1160</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">+</span> <span class=\"mi\">1160</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"n\">_data_I_11_21</span><span class=\"p\">[</span><span class=\"mi\">1160</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">-</span> <span class=\"mi\">1160</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"n\">_data_I_1m1_21</span><span class=\"p\">[</span><span class=\"mi\">1160</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">+</span> <span class=\"mi\">1160</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"n\">_data_I_1m1_21</span><span class=\"p\">[</span><span class=\"mi\">1160</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">-</span> <span class=\"mi\">1160</span><span class=\"p\">];</span>\n",
" <span class=\"p\">}</span> \n",
"<span class=\"p\">}</span>\n",
"</pre></div>\n"
],
"text/plain": [
"FUNC_PREFIX __launch_bounds__(256) void kernel(double * RESTRICT const _data_I, double * RESTRICT _data_dst)\n",
" if (blockDim.x*blockIdx.x + threadIdx.x + 1 < 81 && blockDim.y*blockIdx.y + threadIdx.y + 1 < 289)\n",
" const int64_t ctr_0 = blockDim.x*blockIdx.x + threadIdx.x + 1;\n",
" const int64_t ctr_1 = blockDim.y*blockIdx.y + threadIdx.y + 1;\n",
" double * RESTRICT _data_dst_10 = _data_dst + ctr_1;\n",
" double * RESTRICT const _data_I_11_21 = _data_I + 4*ctr_1 + 5;\n",
" double * RESTRICT const _data_I_1m1_21 = _data_I + 4*ctr_1 - 3;\n",
" double * RESTRICT const _data_I_10_21 = _data_I + 4*ctr_1 + 1;\n",
" _data_dst_10[290*ctr_0] = -2*_data_I_10_21[1160*ctr_0 - 1160] + 2*_data_I_10_21[1160*ctr_0 + 1160] - _data_I_11_21[1160*ctr_0 + 1160] - _data_I_11_21[1160*ctr_0 - 1160] + _data_I_1m1_21[1160*ctr_0 + 1160] - _data_I_1m1_21[1160*ctr_0 - 1160];\n",
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
" } \n",
"}"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ps.show_code(gpu_ast)"
]
}
],
"metadata": {
"anaconda-cloud": {},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
}
},
"nbformat": 4,
"nbformat_minor": 2
}