Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from pystencils.session import *"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Tutorial 02: Basic Kernel generation with *pystencils*\n",
"\n",
"Now that you have an [overview of pystencils](01_tutorial_getting_started.ipynb), \n",
"this tutorial shows in more detail how to formulate, optimize and run stencil kernels.\n",
"\n",
"## 1) Kernel Definition\n",
"\n",
"### a) Defining kernels with assignment lists and the `kernel` decorator \n",
"\n",
"*pystencils* gets a symbolic formulation of the kernel. This can be either an `Assignment` or a sequence of `Assignment`s that follow a set of restrictions. \n",
"\n",
"Lets first create a kernel that consists of multiple assignments:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"src_arr = np.zeros([20, 30])\n",
"dst_arr = np.zeros_like(src_arr)\n",
"\n",
"dst, src = ps.fields(dst=dst_arr, src=src_arr)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$$\\left [ grad_{x} \\leftarrow \\frac{{{src}_{E}}}{2} - \\frac{{{src}_{W}}}{2}, \\quad grad_{y} \\leftarrow \\frac{{{src}_{N}}}{2} - \\frac{{{src}_{S}}}{2}, \\quad {{dst}_{C}} \\leftarrow grad_{x} + grad_{y}\\right ]$$"
],
"text/plain": [
"⎡ src_E src_W src_N src_S ⎤\n",
"⎢gradₓ := ───── - ─────, grad_y := ───── - ─────, dst_C := gradₓ + grad_y⎥\n",
"⎣ 2 2 2 2 ⎦"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"grad_x, grad_y = sp.symbols(\"grad_x, grad_y\")\n",
"\n",
"symbolic_description = [\n",
" ps.Assignment(grad_x, (src[1, 0] - src[-1, 0]) / 2),\n",
" ps.Assignment(grad_y, (src[0, 1] - src[0, -1]) / 2),\n",
" ps.Assignment(dst[0, 0], grad_x + grad_y),\n",
"]\n",
"kernel = ps.create_kernel(symbolic_description)\n",
"symbolic_description"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We created subexpressions, using standard sympy symbols on the left hand side, to split the kernel into multiple assignments. Defining a kernel using a list of `Assignment`s is quite tedious and hard to read. \n",
"To simplify the formulation of a kernel, *pystencils* offers the `kernel` decorator, that transforms a normal Python function with `@=` assignments into an assignment list that can be passed to `create_kernel`. "
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$$\\left [ grad_{x} \\leftarrow \\frac{{{src}_{E}}}{2} - \\frac{{{src}_{W}}}{2}, \\quad grad_{y} \\leftarrow \\frac{{{src}_{N}}}{2} - \\frac{{{src}_{S}}}{2}, \\quad {{dst}_{C}} \\leftarrow grad_{x} + grad_{y}\\right ]$$"
],
"text/plain": [
"⎡ src_E src_W src_N src_S ⎤\n",
"⎢gradₓ := ───── - ─────, grad_y := ───── - ─────, dst_C := gradₓ + grad_y⎥\n",
"⎣ 2 2 2 2 ⎦"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"@ps.kernel\n",
"def symbolic_description_using_function():\n",
" grad_x @= (src[1, 0] - src[-1, 0]) / 2\n",
" grad_y @= (src[0, 1] - src[0, -1]) / 2\n",
" dst[0, 0] @= grad_x + grad_y\n",
"symbolic_description_using_function"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The decorated function can contain any Python code, only the `@=` operator, and the ternary inline `if-else` operator have different meaning. \n",
"\n",
"### b) Ternary 'if' with `Piecewise`\n",
"\n",
"The ternary operator maps to `sympy.Piecewise` functions, that can be used to introduce branching into the kernel. Piecewise defined functions must give a value for every input, i.e. there must be a 'otherwise' clause in the end that is indicated by the condition `True`. Piecewise objects are standard sympy terms that can be integrated into bigger expressions:"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$${{src}_{E}} + \\begin{cases} 1.0 & \\text{for}\\: {{src}_{N}} > 0 \\\\0.0 & \\text{otherwise} \\end{cases}$$"
],
"text/plain": [
" ⎛⎧1.0 for src_N > 0⎞\n",
"src_E + ⎜⎨ ⎟\n",
" ⎝⎩0.0 otherwise ⎠"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sp.Piecewise((1.0, src[0,1] > 0), (0.0, True)) + src[1, 0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Piecewise objects are created by the `kernel` decorator for ternary if-else statements."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"$$\\left [ grad_{x} \\leftarrow \\begin{cases} \\frac{{{src}_{E}}}{2} - \\frac{{{src}_{W}}}{2} & \\text{for}\\: {{src}_{W}} > 0 \\\\0.0 & \\text{otherwise} \\end{cases}\\right ]$$"
],
"text/plain": [
"⎡ ⎧src_E src_W ⎤\n",
"⎢ ⎪───── - ───── for src_W > 0⎥\n",
"⎢gradₓ := ⎨ 2 2 ⎥\n",
"⎢ ⎪ ⎥\n",
"⎣ ⎩ 0.0 otherwise ⎦"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"@ps.kernel\n",
"def kernel_with_piecewise():\n",
" grad_x @= (src[1, 0] - src[-1, 0]) / 2 if src[-1, 0] > 0 else 0.0\n",
"kernel_with_piecewise"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### c) Assignment level optimizations using `AssignmentCollection`\n",
"\n",
"When the kernels get larger and more complex, it is helpful to organize the list of assignment into a more structured way. The `AssignmentCollection` offers optimizating transformation on a list of assignments. It holds two assignment lists, one for subexpressions and one for the main assignments. Main assignments are typically those that write to an array."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>Subexpressions:</div><table style=\"border:none; width: 100%; \"><tr style=\"border:none\"> <td style=\"border:none\">$$a \\leftarrow {{src}_{N}} + {{src}_{W}}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$b \\leftarrow 2 {{src}_{E}} + {{src}_{S}}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$c \\leftarrow - {{src}_{C}} + 2 {{src}_{E}} + {{src}_{N}} + {{src}_{S}} + {{src}_{W}}$$</td> </tr> </table><div>Main Assignments:</div><table style=\"border:none; width: 100%; \"><tr style=\"border:none\"> <td style=\"border:none\">$${{dst}_{C}} \\leftarrow a + b + c$$</td> </tr> </table>"
],
"text/plain": [
"Equation Collection for dst_C"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"@ps.kernel\n",
"def somewhat_longer_dummy_kernel(s):\n",
" s.a @= src[0, 1] + src[-1, 0]\n",
" s.b @= 2 * src[1, 0] + src[0, -1]\n",
" s.c @= src[0, 1] + 2 * src[1, 0] + src[-1, 0] + src[0, -1] - src[0,0]\n",
" dst[0, 0] @= s.a + s.b + s.c\n",
" \n",
"ac = ps.AssignmentCollection(main_assignments=somewhat_longer_dummy_kernel[-1:], \n",
" subexpressions=somewhat_longer_dummy_kernel[:-1])\n",
"ac"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'adds': 8, 'muls': 2, 'divs': 0}"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ac.operation_count"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `pystencils.simp` submodule offers several functions to optimize a collection of assignments.\n",
"It also offers functionality to group optimization into strategies and evaluate them. \n",
"In this example we reduce the number of operations by reusing existing subexpressions to get rid of two unnecessary floating point additions. For more information about assignment collections and simplifications see the [demo notebook](demo_assignment_collection.ipynb)."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>Subexpressions:</div><table style=\"border:none; width: 100%; \"><tr style=\"border:none\"> <td style=\"border:none\">$$a \\leftarrow {{src}_{N}} + {{src}_{W}}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$b \\leftarrow 2 {{src}_{E}} + {{src}_{S}}$$</td> </tr> <tr style=\"border:none\"> <td style=\"border:none\">$$c \\leftarrow - {{src}_{C}} + a + b$$</td> </tr> </table><div>Main Assignments:</div><table style=\"border:none; width: 100%; \"><tr style=\"border:none\"> <td style=\"border:none\">$${{dst}_{C}} \\leftarrow a + b + c$$</td> </tr> </table>"
],
"text/plain": [
"Equation Collection for dst_C"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"opt_ac = ps.simp.subexpression_substitution_in_existing_subexpressions(ac)\n",
"opt_ac"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'adds': 6, 'muls': 1, 'divs': 0}"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"opt_ac.operation_count"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### d) Ghost layers and iteration region\n",
"\n",
"When creating a kernel with neighbor accesses, *pystencils* automatically restricts the iteration region, such that all accesses are safe. "
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<style>.highlight .hll { background-color: #ffffcc }\n",
".highlight { background: #f8f8f8; }\n",
".highlight .c { color: #408080; font-style: italic } /* Comment */\n",
".highlight .err { border: 1px solid #FF0000 } /* Error */\n",
".highlight .k { color: #008000; font-weight: bold } /* Keyword */\n",
".highlight .o { color: #666666 } /* Operator */\n",
".highlight .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
".highlight .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
".highlight .cp { color: #BC7A00 } /* Comment.Preproc */\n",
".highlight .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
".highlight .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
".highlight .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
".highlight .gd { color: #A00000 } /* Generic.Deleted */\n",
".highlight .ge { font-style: italic } /* Generic.Emph */\n",
".highlight .gr { color: #FF0000 } /* Generic.Error */\n",
".highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
".highlight .gi { color: #00A000 } /* Generic.Inserted */\n",
".highlight .go { color: #888888 } /* Generic.Output */\n",
".highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
".highlight .gs { font-weight: bold } /* Generic.Strong */\n",
".highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
".highlight .gt { color: #0044DD } /* Generic.Traceback */\n",
".highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
".highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
".highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
".highlight .kp { color: #008000 } /* Keyword.Pseudo */\n",
".highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
".highlight .kt { color: #B00040 } /* Keyword.Type */\n",
".highlight .m { color: #666666 } /* Literal.Number */\n",
".highlight .s { color: #BA2121 } /* Literal.String */\n",
".highlight .na { color: #7D9029 } /* Name.Attribute */\n",
".highlight .nb { color: #008000 } /* Name.Builtin */\n",
".highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
".highlight .no { color: #880000 } /* Name.Constant */\n",
".highlight .nd { color: #AA22FF } /* Name.Decorator */\n",
".highlight .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
".highlight .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
".highlight .nf { color: #0000FF } /* Name.Function */\n",
".highlight .nl { color: #A0A000 } /* Name.Label */\n",
".highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
".highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
".highlight .nv { color: #19177C } /* Name.Variable */\n",
".highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
".highlight .w { color: #bbbbbb } /* Text.Whitespace */\n",
".highlight .mb { color: #666666 } /* Literal.Number.Bin */\n",
".highlight .mf { color: #666666 } /* Literal.Number.Float */\n",
".highlight .mh { color: #666666 } /* Literal.Number.Hex */\n",
".highlight .mi { color: #666666 } /* Literal.Number.Integer */\n",
".highlight .mo { color: #666666 } /* Literal.Number.Oct */\n",
".highlight .sa { color: #BA2121 } /* Literal.String.Affix */\n",
".highlight .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
".highlight .sc { color: #BA2121 } /* Literal.String.Char */\n",
".highlight .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
".highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
".highlight .s2 { color: #BA2121 } /* Literal.String.Double */\n",
".highlight .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
".highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
".highlight .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
".highlight .sx { color: #008000 } /* Literal.String.Other */\n",
".highlight .sr { color: #BB6688 } /* Literal.String.Regex */\n",
".highlight .s1 { color: #BA2121 } /* Literal.String.Single */\n",
".highlight .ss { color: #19177C } /* Literal.String.Symbol */\n",
".highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
".highlight .fm { color: #0000FF } /* Name.Function.Magic */\n",
".highlight .vc { color: #19177C } /* Name.Variable.Class */\n",
".highlight .vg { color: #19177C } /* Name.Variable.Global */\n",
".highlight .vi { color: #19177C } /* Name.Variable.Instance */\n",
".highlight .vm { color: #19177C } /* Name.Variable.Magic */\n",
".highlight .il { color: #666666 } /* Literal.Number.Integer.Long */</style>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<div class=\"highlight\"><pre><span></span><span class=\"n\">FUNC_PREFIX</span> <span class=\"kt\">void</span> <span class=\"nf\">kernel</span><span class=\"p\">(</span><span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"n\">fd_dst</span><span class=\"p\">,</span> <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"k\">const</span> <span class=\"n\">fd_src</span><span class=\"p\">)</span>\n",
"<span class=\"p\">{</span>\n",
" <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"kt\">int</span> <span class=\"n\">ctr_0</span> <span class=\"o\">=</span> <span class=\"mi\">2</span><span class=\"p\">;</span> <span class=\"n\">ctr_0</span> <span class=\"o\"><</span> <span class=\"mi\">18</span><span class=\"p\">;</span> <span class=\"n\">ctr_0</span> <span class=\"o\">+=</span> <span class=\"mi\">1</span><span class=\"p\">)</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"n\">fd_dst_C</span> <span class=\"o\">=</span> <span class=\"mi\">30</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">+</span> <span class=\"n\">fd_dst</span><span class=\"p\">;</span>\n",
" <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"k\">const</span> <span class=\"n\">fd_src_2E</span> <span class=\"o\">=</span> <span class=\"mi\">30</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">+</span> <span class=\"n\">fd_src</span> <span class=\"o\">+</span> <span class=\"mi\">60</span><span class=\"p\">;</span>\n",
" <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"k\">const</span> <span class=\"n\">fd_src_W</span> <span class=\"o\">=</span> <span class=\"mi\">30</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">+</span> <span class=\"n\">fd_src</span> <span class=\"o\">-</span> <span class=\"mi\">30</span><span class=\"p\">;</span>\n",
" <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"kt\">int</span> <span class=\"n\">ctr_1</span> <span class=\"o\">=</span> <span class=\"mi\">2</span><span class=\"p\">;</span> <span class=\"n\">ctr_1</span> <span class=\"o\"><</span> <span class=\"mi\">28</span><span class=\"p\">;</span> <span class=\"n\">ctr_1</span> <span class=\"o\">+=</span> <span class=\"mi\">1</span><span class=\"p\">)</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"n\">fd_dst_C</span><span class=\"p\">[</span><span class=\"n\">ctr_1</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"n\">fd_src_2E</span><span class=\"p\">[</span><span class=\"n\">ctr_1</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"n\">fd_src_W</span><span class=\"p\">[</span><span class=\"n\">ctr_1</span><span class=\"p\">];</span>\n",
" <span class=\"p\">}</span>\n",
" <span class=\"p\">}</span>\n",
"<span class=\"p\">}</span>\n",
"</pre></div>\n"
],
"text/plain": [
"FUNC_PREFIX void kernel(double * RESTRICT fd_dst, double * RESTRICT const fd_src)\n",
"{\n",
" for (int ctr_0 = 2; ctr_0 < 18; ctr_0 += 1)\n",
" {\n",
" double * RESTRICT fd_dst_C = 30*ctr_0 + fd_dst;\n",
" double * RESTRICT const fd_src_2E = 30*ctr_0 + fd_src + 60;\n",
" double * RESTRICT const fd_src_W = 30*ctr_0 + fd_src - 30;\n",
" for (int ctr_1 = 2; ctr_1 < 28; ctr_1 += 1)\n",
" {\n",
" fd_dst_C[ctr_1] = fd_src_2E[ctr_1] + fd_src_W[ctr_1];\n",
" }\n",
" }\n",
"}"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"kernel = ps.create_kernel(ps.Assignment(dst[0,0], src[2, 0] + src[-1, 0]))\n",
"ps.show_code(kernel)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"When no additional ghost layer information is given, *pystencils* looks at all neighboring field accesses and introduces the required number of ghost layers **for all directions**. In the example above the largest neighbor accesses was ``src[2, 0]``, so theoretically we would need 2 ghost layers only the the end of the x coordinate. \n",
"By default *pystencils* introduces 2 ghost layers at all borders of the domain. The next cell shows how to change this behavior. Be careful with manual ghost layer specification, wrong values may lead to SEGFAULTs."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<style>.highlight .hll { background-color: #ffffcc }\n",
".highlight { background: #f8f8f8; }\n",
".highlight .c { color: #408080; font-style: italic } /* Comment */\n",
".highlight .err { border: 1px solid #FF0000 } /* Error */\n",
".highlight .k { color: #008000; font-weight: bold } /* Keyword */\n",
".highlight .o { color: #666666 } /* Operator */\n",
".highlight .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
".highlight .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
".highlight .cp { color: #BC7A00 } /* Comment.Preproc */\n",
".highlight .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
".highlight .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
".highlight .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
".highlight .gd { color: #A00000 } /* Generic.Deleted */\n",
".highlight .ge { font-style: italic } /* Generic.Emph */\n",
".highlight .gr { color: #FF0000 } /* Generic.Error */\n",
".highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
".highlight .gi { color: #00A000 } /* Generic.Inserted */\n",
".highlight .go { color: #888888 } /* Generic.Output */\n",
".highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
".highlight .gs { font-weight: bold } /* Generic.Strong */\n",
".highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
".highlight .gt { color: #0044DD } /* Generic.Traceback */\n",
".highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
".highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
".highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
".highlight .kp { color: #008000 } /* Keyword.Pseudo */\n",
".highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
".highlight .kt { color: #B00040 } /* Keyword.Type */\n",
".highlight .m { color: #666666 } /* Literal.Number */\n",
".highlight .s { color: #BA2121 } /* Literal.String */\n",
".highlight .na { color: #7D9029 } /* Name.Attribute */\n",
".highlight .nb { color: #008000 } /* Name.Builtin */\n",
".highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
".highlight .no { color: #880000 } /* Name.Constant */\n",
".highlight .nd { color: #AA22FF } /* Name.Decorator */\n",
".highlight .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
".highlight .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
".highlight .nf { color: #0000FF } /* Name.Function */\n",
".highlight .nl { color: #A0A000 } /* Name.Label */\n",
".highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
".highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
".highlight .nv { color: #19177C } /* Name.Variable */\n",
".highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
".highlight .w { color: #bbbbbb } /* Text.Whitespace */\n",
".highlight .mb { color: #666666 } /* Literal.Number.Bin */\n",
".highlight .mf { color: #666666 } /* Literal.Number.Float */\n",
".highlight .mh { color: #666666 } /* Literal.Number.Hex */\n",
".highlight .mi { color: #666666 } /* Literal.Number.Integer */\n",
".highlight .mo { color: #666666 } /* Literal.Number.Oct */\n",
".highlight .sa { color: #BA2121 } /* Literal.String.Affix */\n",
".highlight .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
".highlight .sc { color: #BA2121 } /* Literal.String.Char */\n",
".highlight .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
".highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
".highlight .s2 { color: #BA2121 } /* Literal.String.Double */\n",
".highlight .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
".highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
".highlight .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
".highlight .sx { color: #008000 } /* Literal.String.Other */\n",
".highlight .sr { color: #BB6688 } /* Literal.String.Regex */\n",
".highlight .s1 { color: #BA2121 } /* Literal.String.Single */\n",
".highlight .ss { color: #19177C } /* Literal.String.Symbol */\n",
".highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
".highlight .fm { color: #0000FF } /* Name.Function.Magic */\n",
".highlight .vc { color: #19177C } /* Name.Variable.Class */\n",
".highlight .vg { color: #19177C } /* Name.Variable.Global */\n",
".highlight .vi { color: #19177C } /* Name.Variable.Instance */\n",
".highlight .vm { color: #19177C } /* Name.Variable.Magic */\n",
".highlight .il { color: #666666 } /* Literal.Number.Integer.Long */</style>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<div class=\"highlight\"><pre><span></span><span class=\"n\">FUNC_PREFIX</span> <span class=\"kt\">void</span> <span class=\"nf\">kernel</span><span class=\"p\">(</span><span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"n\">fd_dst</span><span class=\"p\">,</span> <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"k\">const</span> <span class=\"n\">fd_src</span><span class=\"p\">)</span>\n",
"<span class=\"p\">{</span>\n",
" <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"kt\">int</span> <span class=\"n\">ctr_0</span> <span class=\"o\">=</span> <span class=\"mi\">0</span><span class=\"p\">;</span> <span class=\"n\">ctr_0</span> <span class=\"o\"><</span> <span class=\"mi\">18</span><span class=\"p\">;</span> <span class=\"n\">ctr_0</span> <span class=\"o\">+=</span> <span class=\"mi\">1</span><span class=\"p\">)</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"n\">fd_dst_C</span> <span class=\"o\">=</span> <span class=\"mi\">30</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">+</span> <span class=\"n\">fd_dst</span><span class=\"p\">;</span>\n",
" <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"k\">const</span> <span class=\"n\">fd_src_2E</span> <span class=\"o\">=</span> <span class=\"mi\">30</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">+</span> <span class=\"n\">fd_src</span> <span class=\"o\">+</span> <span class=\"mi\">60</span><span class=\"p\">;</span>\n",
" <span class=\"kt\">double</span> <span class=\"o\">*</span> <span class=\"n\">RESTRICT</span> <span class=\"k\">const</span> <span class=\"n\">fd_src_W</span> <span class=\"o\">=</span> <span class=\"mi\">30</span><span class=\"o\">*</span><span class=\"n\">ctr_0</span> <span class=\"o\">+</span> <span class=\"n\">fd_src</span> <span class=\"o\">-</span> <span class=\"mi\">30</span><span class=\"p\">;</span>\n",
" <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"kt\">int</span> <span class=\"n\">ctr_1</span> <span class=\"o\">=</span> <span class=\"mi\">1</span><span class=\"p\">;</span> <span class=\"n\">ctr_1</span> <span class=\"o\"><</span> <span class=\"mi\">30</span><span class=\"p\">;</span> <span class=\"n\">ctr_1</span> <span class=\"o\">+=</span> <span class=\"mi\">1</span><span class=\"p\">)</span>\n",
" <span class=\"p\">{</span>\n",
" <span class=\"n\">fd_dst_C</span><span class=\"p\">[</span><span class=\"n\">ctr_1</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"n\">fd_src_2E</span><span class=\"p\">[</span><span class=\"n\">ctr_1</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"n\">fd_src_W</span><span class=\"p\">[</span><span class=\"n\">ctr_1</span><span class=\"p\">];</span>\n",
" <span class=\"p\">}</span>\n",
" <span class=\"p\">}</span>\n",
"<span class=\"p\">}</span>\n",
"</pre></div>\n"
],
"text/plain": [
"FUNC_PREFIX void kernel(double * RESTRICT fd_dst, double * RESTRICT const fd_src)\n",
"{\n",
" for (int ctr_0 = 0; ctr_0 < 18; ctr_0 += 1)\n",
" {\n",
" double * RESTRICT fd_dst_C = 30*ctr_0 + fd_dst;\n",
" double * RESTRICT const fd_src_2E = 30*ctr_0 + fd_src + 60;\n",
" double * RESTRICT const fd_src_W = 30*ctr_0 + fd_src - 30;\n",
" for (int ctr_1 = 1; ctr_1 < 30; ctr_1 += 1)\n",
" {\n",
" fd_dst_C[ctr_1] = fd_src_2E[ctr_1] + fd_src_W[ctr_1];\n",
" }\n",
" }\n",
"}"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"gl_spec = [(0, 2), # 0 ghost layers at the left, 2 at the right border\n",
" (1, 0)] # 1 ghost layer at the lower y, one at the upper y coordinate\n",
"kernel = ps.create_kernel(ps.Assignment(dst[0,0], src[2, 0] + src[-1, 0]), ghost_layers=gl_spec)\n",
"ps.show_code(kernel)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2 ) Restrictions\n",
"\n",
"\n",
"### a) Independence Restriction\n",
"\n",
"*pystencils* only works for kernels where each array element can be updated independently from all other elements. This restriction ensures that the kernels can be easily parallelized and also be run on the GPU. Trying to define kernels where the results depends on the iteration order, leads to a ValueError."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Field dst is written at two different locations\n"
]
}
],
"source": [
"invalid_description = [\n",
" ps.Assignment(dst[1, 0], src[1, 0] + src[-1, 0]),\n",
" ps.Assignment(dst[0, 0], src[1, 0] - src[-1, 0]),\n",
"]\n",
"try:\n",
" invalid_kernel = ps.create_kernel(invalid_description)\n",
" assert False, \"Should never be executed\"\n",
"except ValueError as e:\n",
" print(e)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The independence restriction makes sure that the kernel can be safely parallelized by checking the following conditions: If a field is modified inside the kernel, it may only be modified at a single spatial position. In that case the field may also only be read at this position. Fields that are not modified may be read at multiple neighboring positions.\n",
"\n",
"Specifically, this rule allows for in-place updates that don't access neighbors."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"valid_kernel = ps.create_kernel(ps.Assignment(src[0,0], 2*src[0,0] + 42))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If a field stores multiple values per cell, as in the next example, this restriction only applies for accesses with the same index."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"v = ps.fields(\"v(2): double[2D]\")\n",
"valid_kernel = ps.create_kernel([ps.Assignment(v[0,0](1), 2*v[0,0](1) + 42),\n",
" ps.Assignment(v[0,1](0), 2*v[1,0](0) + 42)])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### b) Static Single Assignment Form\n",
"\n",
"All assignments that don't write to a field must be in SSA form\n",
"1. Each sympy symbol may only occur once as a left-hand-side (fields can be written multiple times)\n",
"2. A symbol has to be defined before it is used. If it is never defined it is introduced as function parameter\n",
"\n",
"The next cell demonstrates the first SSA restriction:"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Assignments not in SSA form, multiple assignments to a\n"
]
}
],
"source": [
"@ps.kernel\n",
"def not_allowed():\n",
" a, b = sp.symbols(\"a b\")\n",
" a @= src[0, 0]\n",
" b @= a + 3\n",
" a @= src[-1, 0]\n",
" dst[0, 0] @= a + b\n",
"try:\n",
" ps.create_kernel(not_allowed)\n",
" assert False\n",
"except ValueError as e:\n",
" print(e)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"However, for right hand sides that are Field.Accesses this is allowed:"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"KernelFunction kernel([<double * RESTRICT fd_dst>, <double * RESTRICT const fd_src>])"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"@ps.kernel\n",
"def allowed():\n",
" dst[0, 0] @= src[0, 1] + src[1, 0]\n",
" dst[0, 0] @= 2 * dst[0, 0]\n",
"ps.create_kernel(allowed)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
}
},
"nbformat": 4,
"nbformat_minor": 2
}