Skip to content
Snippets Groups Projects
kernelcreation.py 5.74 KiB
Newer Older
from pystencils.assignment_collection import AssignmentCollection
Martin Bauer's avatar
Martin Bauer committed
from pystencils.gpucuda.indexing import indexing_creator_from_params
Martin Bauer's avatar
Martin Bauer committed
def create_kernel(equations, target='cpu', data_type="double", iteration_slice=None, ghost_layers=None,
                  cpu_openmp=False, cpu_vectorize_info=None,
                  gpu_indexing='block', gpu_indexing_params={}):
Martin Bauer's avatar
Martin Bauer committed
    """
    Creates abstract syntax tree (AST) of kernel, using a list of update equations.
    :param equations: either be a plain list of equations or a AssignmentCollection object
Martin Bauer's avatar
Martin Bauer committed
    :param target: 'cpu', 'llvm' or 'gpu'
Martin Bauer's avatar
Martin Bauer committed
    :param data_type: data type used for all untyped symbols (i.e. non-fields), can also be a dict from symbol name
Martin Bauer's avatar
Martin Bauer committed
                     to type
Martin Bauer's avatar
Martin Bauer committed
    :param iteration_slice: rectangular subset to iterate over, if not specified the complete non-ghost layer part of the
Martin Bauer's avatar
Martin Bauer committed
                           field is iterated over
Martin Bauer's avatar
Martin Bauer committed
    :param ghost_layers: if left to default, the number of necessary ghost layers is determined automatically
Martin Bauer's avatar
Martin Bauer committed
                        a single integer specifies the ghost layer count at all borders, can also be a sequence of
                        pairs [(xLowerGl, xUpperGl), .... ]

    CPU specific Parameters:
Martin Bauer's avatar
Martin Bauer committed
    :param cpu_openmp: True or number of threads for OpenMP parallelization, False for no OpenMP
    :param cpu_vectorize_info: pair of instruction set name ('sse, 'avx', 'avx512') and data type ('float', 'double')
Martin Bauer's avatar
Martin Bauer committed

    GPU specific Parameters
Martin Bauer's avatar
Martin Bauer committed
    :param gpu_indexing: either 'block' or 'line' , or custom indexing class (see gpucuda/indexing.py)
    :param gpu_indexing_params: dict with indexing parameters (constructor parameters of indexing class)
Martin Bauer's avatar
Martin Bauer committed
                              e.g. for 'block' one can specify {'blockSize': (20, 20, 10) }

    :return: abstract syntax tree object, that can either be printed as source code or can be compiled with
             through its compile() function
    """

    # ----  Normalizing parameters
Martin Bauer's avatar
Martin Bauer committed
    split_groups = ()
    if isinstance(equations, AssignmentCollection):
Martin Bauer's avatar
Martin Bauer committed
        if 'split_groups' in equations.simplification_hints:
            split_groups = equations.simplification_hints['split_groups']
Martin Bauer's avatar
Martin Bauer committed
        equations = equations.all_assignments
Martin Bauer's avatar
Martin Bauer committed

    # ----  Creating ast
    if target == 'cpu':
Martin Bauer's avatar
Martin Bauer committed
        from pystencils.cpu import create_kernel
        from pystencils.cpu import add_openmp
        ast = create_kernel(equations, type_info=data_type, split_groups=split_groups,
                            iteration_slice=iteration_slice, ghost_layers=ghost_layers)
        if cpu_openmp:
            add_openmp(ast, num_threads=cpu_openmp)
        if cpu_vectorize_info:
Martin Bauer's avatar
Martin Bauer committed
            import pystencils.backends.simd_instruction_sets as vec
            from pystencils.vectorization import vectorize
Martin Bauer's avatar
Martin Bauer committed
            vec_params = cpu_vectorize_info
            vec.selectedInstructionSet = vec.x86_vector_instruction_set(instruction_set=vec_params[0],
                                                                        data_type=vec_params[1])
Martin Bauer's avatar
Martin Bauer committed
            vectorize(ast)
        return ast
    elif target == 'llvm':
Martin Bauer's avatar
Martin Bauer committed
        from pystencils.llvm import create_kernel
        ast = create_kernel(equations, type_info=data_type, split_groups=split_groups,
                            iteration_slice=iteration_slice, ghost_layers=ghost_layers)
Martin Bauer's avatar
Martin Bauer committed
        return ast
    elif target == 'gpu':
Martin Bauer's avatar
Martin Bauer committed
        from pystencils.gpucuda import create_cuda_kernel
        ast = create_cuda_kernel(equations, type_info=data_type,
                                 indexing_creator=indexing_creator_from_params(gpu_indexing, gpu_indexing_params),
                                 iteration_slice=iteration_slice, ghost_layers=ghost_layers)
Martin Bauer's avatar
Martin Bauer committed
        return ast
    else:
        raise ValueError("Unknown target %s. Has to be one of 'cpu', 'gpu' or 'llvm' " % (target,))


Martin Bauer's avatar
Martin Bauer committed
def create_indexed_kernel(assignments, index_fields, target='cpu', data_type="double", coordinate_names=('x', 'y', 'z'),
                          cpu_openmp=True, gpu_indexing='block', gpu_indexing_params={}):
Martin Bauer's avatar
Martin Bauer committed
    """
Martin Bauer's avatar
Martin Bauer committed
    Similar to :func:`create_kernel`, but here not all cells of a field are updated but only cells with
Martin Bauer's avatar
Martin Bauer committed
    coordinates which are stored in an index field. This traversal method can e.g. be used for boundary handling.

    The coordinates are stored in a separated indexField, which is a one dimensional array with struct data type.
    This struct has to contain fields named 'x', 'y' and for 3D fields ('z'). These names are configurable with the
Martin Bauer's avatar
Martin Bauer committed
    'coordinate_names' parameter. The struct can have also other fields that can be read and written in the kernel, for
Martin Bauer's avatar
Martin Bauer committed
    example boundary parameters.

Martin Bauer's avatar
Martin Bauer committed
    index_fields: list of index fields, i.e. 1D fields with struct data type
    coordinate_names: name of the coordinate fields in the struct data type
Martin Bauer's avatar
Martin Bauer committed
    """

Martin Bauer's avatar
Martin Bauer committed
    if isinstance(assignments, AssignmentCollection):
        assignments = assignments.all_assignments
Martin Bauer's avatar
Martin Bauer committed
    if target == 'cpu':
Martin Bauer's avatar
Martin Bauer committed
        from pystencils.cpu import create_indexed_kernel
        from pystencils.cpu import add_openmp
        ast = create_indexed_kernel(assignments, index_fields=index_fields, type_info=data_type,
                                    coordinate_names=coordinate_names)
        if cpu_openmp:
            add_openmp(ast, num_threads=cpu_openmp)
Martin Bauer's avatar
Martin Bauer committed
        return ast
    elif target == 'llvm':
        raise NotImplementedError("Indexed kernels are not yet supported in LLVM backend")
    elif target == 'gpu':
Martin Bauer's avatar
Martin Bauer committed
        from pystencils.gpucuda import created_indexed_cuda_kernel
        ast = created_indexed_cuda_kernel(assignments, index_fields, type_info=data_type, coordinate_names=coordinate_names,
                                          indexing_creator=indexing_creator_from_params(gpu_indexing, gpu_indexing_params))
Martin Bauer's avatar
Martin Bauer committed
        return ast
    else:
        raise ValueError("Unknown target %s. Has to be either 'cpu' or 'gpu'" % (target,))