Newer
Older
import sympy as sp
import pystencils as ps

Alexander Reinauer
committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import numpy as np
import pytest
from itertools import product
@pytest.mark.parametrize("dim", [2, 3])
def test_advection_diffusion(dim: int):
# parameters
if dim == 2:
domain_size = (32, 32)
flux_neighbors = 4
elif dim == 3:
domain_size = (16, 16, 16)
flux_neighbors = 13
dh = ps.create_data_handling(
domain_size=domain_size, periodicity=True, default_target='cpu')
n_field = dh.add_array('n', values_per_cell=1)
j_field = dh.add_array('j', values_per_cell=flux_neighbors,
field_type=ps.FieldType.STAGGERED_FLUX)
velocity_field = dh.add_array('v', values_per_cell=dim)
D = 0.0666
time = 200
def grad(f):
return sp.Matrix([ps.fd.diff(f, i) for i in range(dim)])
flux_eq = - D * grad(n_field)
fvm_eq = ps.fd.FVM1stOrder(n_field, flux=flux_eq)
vof_adv = ps.fd.VOF(j_field, velocity_field, n_field)
# merge calculation of advection and diffusion terms
flux = []
for adv, div in zip(vof_adv, fvm_eq.discrete_flux(j_field)):
assert adv.lhs == div.lhs
flux.append(ps.Assignment(adv.lhs, adv.rhs + div.rhs))
flux_kernel = ps.create_staggered_kernel(flux).compile()
pde_kernel = ps.create_kernel(
fvm_eq.discrete_continuity(j_field)).compile()
sync_conc = dh.synchronization_function([n_field.name])
# analytical density calculation
def density(pos: np.ndarray, time: int):
return (4 * np.pi * D * time)**(-1.5) * \
np.exp(-np.sum(np.square(pos), axis=dim) / (4 * D * time))
pos = np.zeros((*domain_size, dim))
xpos = np.arange(-domain_size[0] // 2, domain_size[0] // 2)
ypos = np.arange(-domain_size[1] // 2, domain_size[1] // 2)
if dim == 2:
pos[..., 1], pos[..., 0] = np.meshgrid(xpos, ypos)
elif dim == 3:
zpos = np.arange(-domain_size[2] // 2, domain_size[2] // 2)
pos[..., 2], pos[..., 1], pos[..., 0] = np.meshgrid(xpos, ypos, zpos)
def run(velocity: np.ndarray, time: int):
print(f"{velocity}, {time}")
dh.fill(n_field.name, np.nan, ghost_layers=True, inner_ghost_layers=True)
dh.fill(j_field.name, np.nan, ghost_layers=True, inner_ghost_layers=True)
# set initial values for velocity and density
for i in range(dim):
dh.fill(velocity_field.name, velocity[i], i, ghost_layers=True, inner_ghost_layers=True)
dh.fill(n_field.name, 0)
dh.fill(n_field.name, 1, slice_obj=ps.make_slice[[
dom // 2 for dom in domain_size]])
sync_conc()
for i in range(time):
dh.run_kernel(flux_kernel)
dh.run_kernel(pde_kernel)
sync_conc()
calc_density = density(pos - velocity * time, time)
np.testing.assert_allclose(dh.gather_array(
n_field.name), calc_density, atol=1e-2, rtol=0)
for vel in product([0, -0.08, 0.08], repeat=dim):
run(np.array(vel), time)
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
def test_ek():
# parameters
L = (40, 40)
D = sp.Symbol("D")
z = sp.Symbol("z")
# data structures
dh = ps.create_data_handling(L, periodicity=True, default_target='cpu')
c = dh.add_array('c', values_per_cell=1)
v = dh.add_array('v', values_per_cell=dh.dim)
j = dh.add_array('j', values_per_cell=dh.dim * 2, field_type=ps.FieldType.STAGGERED_FLUX)
Phi = dh.add_array('Φ', values_per_cell=1)
# perform automatic discretization
def Gradient(f):
return sp.Matrix([ps.fd.diff(f, i) for i in range(dh.dim)])
flux_eq = -D * Gradient(c) + D * z * c.center * Gradient(Phi)
disc = ps.fd.FVM1stOrder(c, flux_eq)
flux_assignments = disc.discrete_flux(j)
advection_assignments = ps.fd.VOF(j, v, c)
continuity_assignments = disc.discrete_continuity(j)
# manual discretization
x_staggered = - c[-1, 0] + c[0, 0] + z * (c[-1, 0] + c[0, 0]) / 2 * (Phi[-1, 0] - Phi[0, 0])
y_staggered = - c[0, -1] + c[0, 0] + z * (c[0, -1] + c[0, 0]) / 2 * (Phi[0, -1] - Phi[0, 0])
xy_staggered = - c[-1, -1] + c[0, 0] + z * (c[-1, -1] + c[0, 0]) / 2 * (Phi[-1, -1] - Phi[0, 0])
xY_staggered = - c[-1, 1] + c[0, 0] + z * (c[-1, 1] + c[0, 0]) / 2 * (Phi[-1, 1] - Phi[0, 0])
jj = j.staggered_access
divergence = -1 / (1 + sp.sqrt(2) if j.index_shape[0] == 4 else 1) * \
sum([jj(d) / sp.Matrix(ps.stencil.direction_string_to_offset(d)).norm() for d in j.staggered_stencil
+ [ps.stencil.inverse_direction_string(d) for d in j.staggered_stencil]])
update = [ps.Assignment(c.center, c.center + divergence)]
flux = [ps.Assignment(j.staggered_access("W"), D * x_staggered),
ps.Assignment(j.staggered_access("S"), D * y_staggered)]
if j.index_shape[0] == 4:
flux += [ps.Assignment(j.staggered_access("SW"), D * xy_staggered),
ps.Assignment(j.staggered_access("NW"), D * xY_staggered)]
# compare
for a, b in zip(flux, flux_assignments):
assert a.lhs == b.lhs
assert sp.simplify(a.rhs - b.rhs) == 0
for a, b in zip(update, continuity_assignments):
assert a.lhs == b.lhs
assert a.rhs == b.rhs