Newer
Older
"""Tests for the (un)packing (from)to buffers on a CUDA GPU."""
import numpy as np
from pystencils import Field, FieldType, Assignment
from pystencils.field import layout_string_to_tuple, create_numpy_array_with_layout
from pystencils.stencil import direction_string_to_offset
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from pystencils.gpucuda import make_python_function, create_cuda_kernel
from pystencils.slicing import add_ghost_layers, get_slice_before_ghost_layer, get_ghost_region_slice
import pytest
try:
# noinspection PyUnresolvedReferences
import pycuda.autoinit
import pycuda.gpuarray as gpuarray
except ImportError:
pass
FIELD_SIZES = [(4, 3), (9, 3, 7)]
def _generate_fields(dt=np.uint8, stencil_directions=1, layout='numpy'):
field_sizes = FIELD_SIZES
if stencil_directions > 1:
field_sizes = [s + (stencil_directions,) for s in field_sizes]
fields = []
for size in field_sizes:
field_layout = layout_string_to_tuple(layout, len(size))
src_arr = create_numpy_array_with_layout(size, field_layout).astype(dt)
array_data = np.reshape(np.arange(1, int(np.prod(size)+1)), size)
# Use flat iterator to input data into the array
src_arr.flat = add_ghost_layers(array_data,
index_dimensions=1 if stencil_directions > 1 else 0).astype(dt).flat
gpu_src_arr = gpuarray.to_gpu(src_arr)
gpu_dst_arr = gpuarray.zeros_like(gpu_src_arr)
gpu_buffer_arr = gpuarray.zeros(np.prod(src_arr.shape), dtype=dt)
fields.append((src_arr, gpu_src_arr, gpu_dst_arr, gpu_buffer_arr))
return fields
@pytest.mark.gpu
def test_full_scalar_field():
"""Tests fully (un)packing a scalar field (from)to a GPU buffer."""
fields = _generate_fields()
for (src_arr, gpu_src_arr, gpu_dst_arr, gpu_buffer_arr) in fields:
src_field = Field.create_from_numpy_array("src_field", src_arr)
dst_field = Field.create_from_numpy_array("dst_field", src_arr)
buffer = Field.create_generic("buffer", spatial_dimensions=1,
field_type=FieldType.BUFFER, dtype=src_arr.dtype)
pack_eqs = [Assignment(buffer.center(), src_field.center())]
pack_types = {'src_field': gpu_src_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
pack_code = create_cuda_kernel(pack_eqs, type_info=pack_types)
pack_kernel = make_python_function(pack_code)
pack_kernel(buffer=gpu_buffer_arr, src_field=gpu_src_arr)
unpack_eqs = [Assignment(dst_field.center(), buffer.center())]
unpack_types = {'dst_field': gpu_dst_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
unpack_code = create_cuda_kernel(unpack_eqs, type_info=unpack_types)
unpack_kernel = make_python_function(unpack_code)
unpack_kernel(dst_field=gpu_dst_arr, buffer=gpu_buffer_arr)
dst_arr = gpu_dst_arr.get()
np.testing.assert_equal(src_arr, dst_arr)
@pytest.mark.gpu
def test_field_slice():
"""Tests (un)packing slices of a scalar field (from)to a buffer."""
fields = _generate_fields()
for d in ['N', 'S', 'NW', 'SW', 'TNW', 'B']:
for (src_arr, gpu_src_arr, gpu_dst_arr, gpu_buffer_arr) in fields:
# Extract slice from N direction of the field
slice_dir = direction_string_to_offset(d, dim=len(src_arr.shape))
pack_slice = get_slice_before_ghost_layer(slice_dir)
unpack_slice = get_ghost_region_slice(slice_dir)
src_field = Field.create_from_numpy_array("src_field", src_arr[pack_slice])
dst_field = Field.create_from_numpy_array("dst_field", src_arr[unpack_slice])
buffer = Field.create_generic("buffer", spatial_dimensions=1,
field_type=FieldType.BUFFER, dtype=src_arr.dtype)
pack_eqs = [Assignment(buffer.center(), src_field.center())]
pack_types = {'src_field': gpu_src_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
pack_code = create_cuda_kernel(pack_eqs, type_info=pack_types)
pack_kernel = make_python_function(pack_code)
pack_kernel(buffer=gpu_buffer_arr, src_field=gpu_src_arr[pack_slice])
# Unpack into ghost layer of dst_field in N direction
unpack_eqs = [Assignment(dst_field.center(), buffer.center())]
unpack_types = {'dst_field': gpu_dst_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
unpack_code = create_cuda_kernel(unpack_eqs, type_info=unpack_types)
unpack_kernel = make_python_function(unpack_code)
unpack_kernel(buffer=gpu_buffer_arr, dst_field=gpu_dst_arr[unpack_slice])
dst_arr = gpu_dst_arr.get()
np.testing.assert_equal(src_arr[pack_slice], dst_arr[unpack_slice])
@pytest.mark.gpu
def test_all_cell_values():
"""Tests (un)packing all cell values of the a field (from)to a buffer."""
num_cell_values = 7
fields = _generate_fields(stencil_directions=num_cell_values)
for (src_arr, gpu_src_arr, gpu_dst_arr, gpu_buffer_arr) in fields:
src_field = Field.create_from_numpy_array("src_field", gpu_src_arr, index_dimensions=1)
dst_field = Field.create_from_numpy_array("dst_field", gpu_src_arr, index_dimensions=1)
buffer = Field.create_generic("buffer", spatial_dimensions=1, index_dimensions=1,
field_type=FieldType.BUFFER, dtype=gpu_src_arr.dtype)
pack_eqs = []
# Since we are packing all cell values for all cells, then
# the buffer index is equivalent to the field index
for idx in range(num_cell_values):
eq = Assignment(buffer(idx), src_field(idx))
pack_eqs.append(eq)
pack_types = {'src_field': gpu_src_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
pack_code = create_cuda_kernel(pack_eqs, type_info=pack_types)
pack_kernel = make_python_function(pack_code)
pack_kernel(buffer=gpu_buffer_arr, src_field=gpu_src_arr)
unpack_eqs = []
for idx in range(num_cell_values):
eq = Assignment(dst_field(idx), buffer(idx))
unpack_eqs.append(eq)
unpack_types = {'dst_field': gpu_dst_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
unpack_code = create_cuda_kernel(unpack_eqs, type_info=unpack_types)
unpack_kernel = make_python_function(unpack_code)
unpack_kernel(buffer=gpu_buffer_arr, dst_field=gpu_dst_arr)
dst_arr = gpu_dst_arr.get()
np.testing.assert_equal(src_arr, dst_arr)
@pytest.mark.gpu
def test_subset_cell_values():
"""Tests (un)packing a subset of cell values of the a field (from)to a buffer."""
num_cell_values = 7
# Cell indices of the field to be (un)packed (from)to the buffer
cell_indices = [1, 3, 5, 6]
fields = _generate_fields(stencil_directions=num_cell_values)
for (src_arr, gpu_src_arr, gpu_dst_arr, gpu_buffer_arr) in fields:
src_field = Field.create_from_numpy_array("src_field", gpu_src_arr, index_dimensions=1)
dst_field = Field.create_from_numpy_array("dst_field", gpu_src_arr, index_dimensions=1)
buffer = Field.create_generic("buffer", spatial_dimensions=1, index_dimensions=1,
field_type=FieldType.BUFFER, dtype=gpu_src_arr.dtype)
pack_eqs = []
# Since we are packing all cell values for all cells, then
# the buffer index is equivalent to the field index
for buffer_idx, cell_idx in enumerate(cell_indices):
eq = Assignment(buffer(buffer_idx), src_field(cell_idx))
pack_eqs.append(eq)
pack_types = {'src_field': gpu_src_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
pack_code = create_cuda_kernel(pack_eqs, type_info=pack_types)
pack_kernel = make_python_function(pack_code)
pack_kernel(buffer=gpu_buffer_arr, src_field=gpu_src_arr)
unpack_eqs = []
for buffer_idx, cell_idx in enumerate(cell_indices):
eq = Assignment(dst_field(cell_idx), buffer(buffer_idx))
unpack_eqs.append(eq)
unpack_types = {'dst_field': gpu_dst_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
unpack_code = create_cuda_kernel(unpack_eqs, type_info=unpack_types)
unpack_kernel = make_python_function(unpack_code)
unpack_kernel(buffer=gpu_buffer_arr, dst_field=gpu_dst_arr)
dst_arr = gpu_dst_arr.get()
mask_arr = np.ma.masked_where((src_arr - dst_arr) != 0, src_arr)
np.testing.assert_equal(dst_arr, mask_arr.filled(int(0)))
@pytest.mark.gpu
def test_field_layouts():
num_cell_values = 7
for layout_str in ['numpy', 'fzyx', 'zyxf', 'reverse_numpy']:
fields = _generate_fields(stencil_directions=num_cell_values, layout=layout_str)
for (src_arr, gpu_src_arr, gpu_dst_arr, gpu_buffer_arr) in fields:
src_field = Field.create_from_numpy_array("src_field", gpu_src_arr, index_dimensions=1)
dst_field = Field.create_from_numpy_array("dst_field", gpu_src_arr, index_dimensions=1)
buffer = Field.create_generic("buffer", spatial_dimensions=1, index_dimensions=1,
field_type=FieldType.BUFFER, dtype=src_arr.dtype)
pack_eqs = []
# Since we are packing all cell values for all cells, then
# the buffer index is equivalent to the field index
for idx in range(num_cell_values):
eq = Assignment(buffer(idx), src_field(idx))
pack_eqs.append(eq)
pack_types = {'src_field': gpu_src_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
pack_code = create_cuda_kernel(pack_eqs, type_info=pack_types)
pack_kernel = make_python_function(pack_code)
pack_kernel(buffer=gpu_buffer_arr, src_field=gpu_src_arr)
unpack_eqs = []
for idx in range(num_cell_values):
eq = Assignment(dst_field(idx), buffer(idx))
unpack_eqs.append(eq)
unpack_types = {'dst_field': gpu_dst_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
unpack_code = create_cuda_kernel(unpack_eqs, type_info=unpack_types)
unpack_kernel = make_python_function(unpack_code)
unpack_kernel(buffer=gpu_buffer_arr, dst_field=gpu_dst_arr)