Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# -*- coding: utf-8 -*-
#
# Copyright © 2019 Stephan Seitz <stephan.seitz@fau.de>
#
# Distributed under terms of the GPLv3 license.
"""
"""
from os.path import dirname, join
import numpy as np
import sympy
import pycuda.autoinit # NOQA
import pycuda.gpuarray as gpuarray
import pystencils
from pystencils.interpolation_astnodes import LinearInterpolator
from pystencils.spatial_coordinates import x_, y_
type_map = {
np.float32: 'float32',
np.float64: 'float64',
np.int32: 'int32',
}
try:
import pyconrad.autoinit
except Exception:
import unittest.mock
pyconrad = unittest.mock.MagicMock()
LENNA_FILE = join(dirname(__file__), 'test_data', 'lenna.png')
try:
import skimage.io
lenna = skimage.io.imread(LENNA_FILE, as_gray=True).astype(np.float64)
pyconrad.imshow(lenna)
except Exception:
lenna = np.random.rand(20, 30)
def test_interpolation():
x_f, y_f = pystencils.fields('x,y: float64 [2d]')
assignments = pystencils.AssignmentCollection({
y_f.center(): LinearInterpolator(x_f).at([x_ + 2.7, y_ + 7.2])
})
print(assignments)
ast = pystencils.create_kernel(assignments)
print(ast)
print(pystencils.show_code(ast))
kernel = ast.compile()
pyconrad.imshow(lenna)
out = np.zeros_like(lenna)
kernel(x=lenna, y=out)
pyconrad.imshow(out, "out")
def test_scale_interpolation():
x_f, y_f = pystencils.fields('x,y: float64 [2d]')
for address_mode in ['border', 'wrap', 'clamp', 'mirror']:
assignments = pystencils.AssignmentCollection({
y_f.center(): LinearInterpolator(x_f, address_mode=address_mode).at([0.5 * x_ + 2.7, 0.25 * y_ + 7.2])
})
print(assignments)
ast = pystencils.create_kernel(assignments)
print(ast)
print(pystencils.show_code(ast))
kernel = ast.compile()
out = np.zeros_like(lenna)
kernel(x=lenna, y=out)
pyconrad.imshow(out, "out " + address_mode)
def test_rotate_interpolation():
x_f, y_f = pystencils.fields('x,y: float64 [2d]')
rotation_angle = sympy.pi / 5
for address_mode in ['border', 'wrap', 'clamp', 'mirror']:
transformed = sympy.rot_axis3(rotation_angle)[:2, :2] * sympy.Matrix((x_, y_))
assignments = pystencils.AssignmentCollection({
y_f.center(): LinearInterpolator(x_f, address_mode=address_mode).at(transformed)
})
print(assignments)
ast = pystencils.create_kernel(assignments)
print(ast)
print(pystencils.show_code(ast))
kernel = ast.compile()
out = np.zeros_like(lenna)
kernel(x=lenna, y=out)
pyconrad.imshow(out, "out " + address_mode)
def test_rotate_interpolation_gpu():
rotation_angle = sympy.pi / 5
scale = 1
for address_mode in ['border', 'wrap', 'clamp', 'mirror']:
previous_result = None
for dtype in [np.int32, np.float32, np.float64]:
if dtype == np.int32:
lenna_gpu = gpuarray.to_gpu(
np.ascontiguousarray(lenna * 255, dtype))
else:
lenna_gpu = gpuarray.to_gpu(
np.ascontiguousarray(lenna, dtype))
for use_textures in [True, False]:
x_f, y_f = pystencils.fields('x,y: %s [2d]' % type_map[dtype], ghost_layers=0)
transformed = scale * \
sympy.rot_axis3(rotation_angle)[:2, :2] * sympy.Matrix((x_, y_)) - sympy.Matrix([2, 2])
assignments = pystencils.AssignmentCollection({
y_f.center(): LinearInterpolator(x_f, address_mode=address_mode).at(transformed)
})
print(assignments)
ast = pystencils.create_kernel(assignments, target='gpu', use_textures_for_interpolation=use_textures)
print(ast)
print(pystencils.show_code(ast))
kernel = ast.compile()
out = gpuarray.zeros_like(lenna_gpu)
kernel(x=lenna_gpu, y=out)
pyconrad.imshow(out,
f"out {address_mode} texture:{use_textures} {type_map[dtype]}")
skimage.io.imsave(f"/tmp/out {address_mode} texture:{use_textures} {type_map[dtype]}.tif",
np.ascontiguousarray(out.get(), np.float32))
if previous_result is not None:
try:
assert np.allclose(previous_result[4:-4, 4:-4], out.get()[4:-4, 4:-4], rtol=100, atol=1e-3)
except AssertionError as e: # NOQA
print("Max error: %f" % np.max(previous_result - out.get()))
# pyconrad.imshow(previous_result - out.get(), "Difference image")
# raise e
previous_result = out.get()
def test_shift_interpolation_gpu():
rotation_angle = 0 # sympy.pi / 5
scale = 1
# shift = - sympy.Matrix([1.5, 1.5])
shift = sympy.Matrix((0.0, 0.0))
for address_mode in ['border', 'wrap', 'clamp', 'mirror']:
previous_result = None
for dtype in [np.float64, np.float32, np.int32]:
if dtype == np.int32:
lenna_gpu = gpuarray.to_gpu(
np.ascontiguousarray(lenna * 255, dtype))
else:
lenna_gpu = gpuarray.to_gpu(
np.ascontiguousarray(lenna, dtype))
for use_textures in [True, False]:
x_f, y_f = pystencils.fields('x,y: %s [2d]' % type_map[dtype], ghost_layers=0)
if use_textures:
transformed = scale * sympy.rot_axis3(rotation_angle)[:2, :2] * sympy.Matrix((x_, y_)) + shift
else:
transformed = scale * sympy.rot_axis3(rotation_angle)[:2, :2] * sympy.Matrix((x_, y_)) + shift
assignments = pystencils.AssignmentCollection({
y_f.center(): LinearInterpolator(x_f, address_mode=address_mode).at(transformed)
})
# print(assignments)
ast = pystencils.create_kernel(assignments, target='gpu', use_textures_for_interpolation=use_textures)
# print(ast)
print(pystencils.show_code(ast))
kernel = ast.compile()
out = gpuarray.zeros_like(lenna_gpu)
kernel(x=lenna_gpu, y=out)
pyconrad.imshow(out,
f"out {address_mode} texture:{use_textures} {type_map[dtype]}")
skimage.io.imsave(f"/tmp/out {address_mode} texture:{use_textures} {type_map[dtype]}.tif",
np.ascontiguousarray(out.get(), np.float32))
# if not (use_single_precision and use_textures):
# if previous_result is not None:
# try:
# assert np.allclose(previous_result[4:-4, 4:-4], out.get()
# [4:-4, 4:-4], rtol=1e-3, atol=1e-2)
# except AssertionError as e:
# print("Max error: %f" % np.max(np.abs(previous_result[4:-4, 4:-4] - out.get()[4:-4, 4:-4])))
# pyconrad.imshow(previous_result[4:-4, 4:-4] - out.get()[4:-4, 4:-4], "Difference image")
# raise e
# previous_result = out.get()
def test_rotate_interpolation_size_change():
x_f, y_f = pystencils.fields('x,y: float64 [2d]')
rotation_angle = sympy.pi / 5
for address_mode in ['border', 'wrap', 'clamp', 'mirror']:
transformed = sympy.rot_axis3(rotation_angle)[:2, :2] * sympy.Matrix((x_, y_))
assignments = pystencils.AssignmentCollection({
y_f.center(): LinearInterpolator(x_f, address_mode=address_mode).at(transformed)
})
print(assignments)
ast = pystencils.create_kernel(assignments)
print(ast)
print(pystencils.show_code(ast))
kernel = ast.compile()
out = np.zeros((100, 150), np.float64)
kernel(x=lenna, y=out)
pyconrad.imshow(out, "small out " + address_mode)
def test_field_interpolated():
x_f, y_f = pystencils.fields('x,y: float64 [2d]')
for address_mode in ['border', 'wrap', 'clamp', 'mirror']:
assignments = pystencils.AssignmentCollection({
y_f.center(): x_f.interpolated_access([0.5 * x_ + 2.7, 0.25 * y_ + 7.2], address_mode=address_mode)
})
print(assignments)
ast = pystencils.create_kernel(assignments)
print(ast)
print(pystencils.show_code(ast))
kernel = ast.compile()
out = np.zeros_like(lenna)
kernel(x=lenna, y=out)
pyconrad.imshow(out, "out " + address_mode)