Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import numpy as np
import sympy as sp
from pystencils import Field, TypedSymbol, createIndexedKernel
from pystencils.backends.cbackend import CustomCppCode
from pystencils.boundaries.createindexlist import numpyDataTypeForBoundaryObject, createBoundaryIndexArray
from pystencils.cache import memorycache
from pystencils.data_types import createType
class BoundaryHandling:
def __init__(self, dataHandling, fieldName, stencil, name="boundaryHandling", target='cpu', openMP=True):
assert dataHandling.hasData(fieldName)
self._dataHandling = dataHandling
self._fieldName = fieldName
self._flagFieldName = name + "Flags"
self._indexArrayName = name + "IndexArrays"
self._target = target
self._openMP = openMP
self._boundaryObjectToBoundaryInfo = {}
self._fluidFlag = 1 << 0
self._nextFreeFlag = 1
self.stencil = stencil
self._dirty = True
# Add flag field to data handling if it does not yet exist
if dataHandling.hasData(self._flagFieldName) or dataHandling.hasData(self._indexArrayName):
raise ValueError("There is already a boundary handling registered at the data handling."
"If you want to add multiple handlings, choose a different name.")
gpu = self._target == 'gpu'
dataHandling.addArray(self._flagFieldName, dtype=np.uint32, cpu=True, gpu=False)
dataHandling.addCustomClass(self._indexArrayName, self.IndexFieldBlockData, cpu=True, gpu=gpu)
ffGhostLayers = self._dataHandling.ghostLayersOfField(self._flagFieldName)
for b in self._dataHandling.iterate(ghostLayers=ffGhostLayers):
b[self._flagFieldName].fill(self._fluidFlag)
@property
def dataHandling(self):
return self._dataHandling
@property
def shape(self):
return self._dataHandling.shape
@property
def dim(self):
return self._dataHandling.dim
@property
def boundaryObjects(self):
return tuple(self._boundaryObjectToName.keys())
@property
def flagArrayName(self):
return self._flagFieldName
def getBoundaryNameToFlagDict(self):
result = {bObj.name: bInfo.flag for bObj, bInfo in self._boundaryObjectToBoundaryInfo.items()}
result['fluid'] = self._fluidFlag
return result
def getMask(self, sliceObj, boundaryObj, inverse=False):
if isinstance(boundaryObj, str) and boundaryObj.lower() == 'fluid':
flag = self._fluidFlag
else:
flag = self._boundaryObjectToBoundaryInfo[boundaryObj].flag
arr = self.dataHandling.gatherArray(self.flagArrayName, sliceObj)
if arr is None:
return None
else:
result = np.bitwise_and(arr, flag)
if inverse:
result = np.logical_not(result)
return result
def setBoundary(self, boundaryObject, sliceObj=None, maskCallback=None, ghostLayers=True, innerGhostLayers=True):
"""
Sets boundary using either a rectangular slice, a boolean mask or a combination of both
:param boundaryObject: instance of a boundary object that should be set
:param sliceObj: a slice object (can be created with makeSlice[]) that selects a part of the domain where
the boundary should be set. If none, the complete domain is selected which makes only sense
if a maskCallback is passed. The slice can have ':' placeholders, which are interpreted
depending on the 'includeGhostLayers' parameter i.e. if it is True, the slice extends
into the ghost layers
:param maskCallback: callback function getting x,y (z) parameters of the cell midpoints and returning a
boolean mask with True entries where boundary cells should be set.
The x, y, z arrays have 2D/3D shape such that they can be used directly
to create the boolean return array. i.e return x < 10 sets boundaries in cells with
midpoint x coordinate smaller than 10.
:param ghostLayers see DataHandling.iterate()
"""
if isinstance(boundaryObject, str) and boundaryObject.lower() == 'fluid':
flag = self._fluidFlag
else:
flag = self._getFlagForBoundary(boundaryObject)
for b in self._dataHandling.iterate(sliceObj, ghostLayers=ghostLayers, innerGhostLayers=innerGhostLayers):
flagArr = b[self._flagFieldName]
if maskCallback is not None:
mask = maskCallback(*b.midpointArrays)
flagArr[mask] = flag
else:
flagArr.fill(flag)
self._dirty = True
def prepare(self):
if not self._dirty:
return
self._createIndexFields()
self._dirty = False
def triggerReinitializationOfBoundaryData(self, **kwargs):
if self._dirty:
self.prepare()
else:
ffGhostLayers = self._dataHandling.ghostLayersOfField(self._flagFieldName)
for b in self._dataHandling.iterate(ghostLayers=ffGhostLayers):
for bObj, setter in b[self._indexArrayName].boundaryObjectToDataSetter.items():
self._boundaryDataInitialization(bObj, setter, **kwargs)
def __call__(self, **kwargs):
if self._dirty:
self.prepare()
for b in self._dataHandling.iterate(gpu=self._target == 'gpu'):
for bObj, idxArr in b[self._indexArrayName].boundaryObjectToIndexList.items():
kwargs[self._fieldName] = b[self._fieldName]
self._boundaryObjectToBoundaryInfo[bObj].kernel(indexField=idxArr, **kwargs)
def geometryToVTK(self, fileName='geometry', boundaries='all', ghostLayers=False):
"""
Writes a VTK field where each cell with the given boundary is marked with 1, other cells are 0
This can be used to display the simulation geometry in Paraview
:param fileName: vtk filename
:param boundaries: boundary object, or special string 'fluid' for fluid cells or special string 'all' for all
boundary conditions.
can also be a sequence, to write multiple boundaries to VTK file
:param ghostLayers: number of ghost layers to write, or True for all, False for none
"""
if boundaries == 'all':
boundaries = list(self._boundaryObjectToBoundaryInfo.keys()) + ['fluid']
elif not hasattr(boundaries, "__len__"):
boundaries = [boundaries]
masksToName = {}
for b in boundaries:
if b == 'fluid':
masksToName[self._fluidFlag] = 'fluid'
else:
masksToName[self._boundaryObjectToBoundaryInfo[b].flag] = b.name
writer = self.dataHandling.vtkWriterFlags(fileName, self._flagFieldName, masksToName, ghostLayers=ghostLayers)
writer(1)
# ------------------------------ Implementation Details ------------------------------------------------------------
def _getFlagForBoundary(self, boundaryObject):
if boundaryObject not in self._boundaryObjectToBoundaryInfo:
symbolicIndexField = Field.createGeneric('indexField', spatialDimensions=1,
dtype=numpyDataTypeForBoundaryObject(boundaryObject, self.dim))
ast = self._createBoundaryKernel(self._dataHandling.fields[self._fieldName],
symbolicIndexField, boundaryObject)
boundaryInfo = self.BoundaryInfo(boundaryObject, flag=1 << self._nextFreeFlag, kernel=ast.compile())
self._nextFreeFlag += 1
self._boundaryObjectToBoundaryInfo[boundaryObject] = boundaryInfo
return self._boundaryObjectToBoundaryInfo[boundaryObject].flag
def _createBoundaryKernel(self, symbolicField, symbolicIndexField, boundaryObject):
return createBoundaryKernel(symbolicField, symbolicIndexField, self.stencil, boundaryObject,
target=self._target, openMP=self._openMP)
def _createIndexFields(self):
dh = self._dataHandling
ffGhostLayers = dh.ghostLayersOfField(self._flagFieldName)
for b in dh.iterate(ghostLayers=ffGhostLayers):
flagArr = b[self._flagFieldName]
pdfArr = b[self._fieldName]
indexArrayBD = b[self._indexArrayName]
indexArrayBD.clear()
for bInfo in self._boundaryObjectToBoundaryInfo.values():
idxArr = createBoundaryIndexArray(flagArr, self.stencil, bInfo.flag, self._fluidFlag,
bInfo.boundaryObject, dh.ghostLayersOfField(self._flagFieldName))
if idxArr.size == 0:
continue
boundaryDataSetter = BoundaryDataSetter(idxArr, b.offset, self.stencil, ffGhostLayers, pdfArr)
indexArrayBD.boundaryObjectToIndexList[bInfo.boundaryObject] = idxArr
indexArrayBD.boundaryObjectToDataSetter[bInfo.boundaryObject] = boundaryDataSetter
self._boundaryDataInitialization(bInfo.boundaryObject, boundaryDataSetter)
def _boundaryDataInitialization(self, boundaryObject, boundaryDataSetter, **kwargs):
if boundaryObject.additionalDataInitCallback:
boundaryObject.additionalDataInitCallback(boundaryDataSetter, **kwargs)
if self._target == 'gpu':
self._dataHandling.toGpu(self._indexArrayName)
class BoundaryInfo(object):
def __init__(self, boundaryObject, flag, kernel):
self.boundaryObject = boundaryObject
self.flag = flag
self.kernel = kernel
class IndexFieldBlockData:
def __init__(self, *args, **kwargs):
self.boundaryObjectToIndexList = {}
self.boundaryObjectToDataSetter = {}
def clear(self):
self.boundaryObjectToIndexList.clear()
self.boundaryObjectToDataSetter.clear()
@staticmethod
def toCpu(gpuVersion, cpuVersion):
gpuVersion = gpuVersion.boundaryObjectToIndexList
cpuVersion = cpuVersion.boundaryObjectToIndexList
for obj, cpuArr in cpuVersion.values():
gpuVersion[obj].get(cpuArr)
@staticmethod
def toGpu(gpuVersion, cpuVersion):
from pycuda import gpuarray
gpuVersion = gpuVersion.boundaryObjectToIndexList
cpuVersion = cpuVersion.boundaryObjectToIndexList
for obj, cpuArr in cpuVersion.items():
if obj not in gpuVersion:
gpuVersion[obj] = gpuarray.to_gpu(cpuArr)
else:
gpuVersion[obj].set(cpuArr)
class BoundaryDataSetter:
def __init__(self, indexArray, offset, stencil, ghostLayers, pdfArray):
self.indexArray = indexArray
self.offset = offset
self.stencil = np.array(stencil)
self.pdfArray = pdfArray.view()
self.pdfArray.flags.writeable = False
arrFieldNames = indexArray.dtype.names
self.dim = 3 if 'z' in arrFieldNames else 2
assert 'x' in arrFieldNames and 'y' in arrFieldNames and 'dir' in arrFieldNames, str(arrFieldNames)
self.boundaryDataNames = set(self.indexArray.dtype.names) - set(['x', 'y', 'z', 'dir'])
self.coordMap = {0: 'x', 1: 'y', 2: 'z'}
self.ghostLayers = ghostLayers
def fluidCellPositions(self, coord):
assert coord < self.dim
return self.indexArray[self.coordMap[coord]] + self.offset[coord] - self.ghostLayers + 0.5
@memorycache()
def linkOffsets(self):
return self.stencil[self.indexArray['dir']]
@memorycache()
def linkPositions(self, coord):
return self.fluidCellPositions(coord) + 0.5 * self.linkOffsets()[:, coord]
@memorycache()
def boundaryCellPositions(self, coord):
return self.fluidCellPositions(coord) + self.linkOffsets()[:, coord]
def __setitem__(self, key, value):
if key not in self.boundaryDataNames:
raise KeyError("Invalid boundary data name %s. Allowed are %s" % (key, self.boundaryDataNames))
self.indexArray[key] = value
def __getitem__(self, item):
if item not in self.boundaryDataNames:
raise KeyError("Invalid boundary data name %s. Allowed are %s" % (item, self.boundaryDataNames))
return self.indexArray[item]
class BoundaryOffsetInfo(CustomCppCode):
# --------------------------- Functions to be used by boundaries --------------------------
@staticmethod
def offsetFromDir(dirIdx, dim):
return tuple([sp.IndexedBase(symbol, shape=(1,))[dirIdx]
for symbol in BoundaryOffsetInfo._offsetSymbols(dim)])
@staticmethod
def invDir(dirIdx):
return sp.IndexedBase(BoundaryOffsetInfo.INV_DIR_SYMBOL, shape=(1,))[dirIdx]
# ---------------------------------- Internal ---------------------------------------------
def __init__(self, stencil):
dim = len(stencil[0])
offsetSym = BoundaryOffsetInfo._offsetSymbols(dim)
code = "\n"
for i in range(dim):
offsetStr = ", ".join([str(d[i]) for d in stencil])
code += "const int64_t %s [] = { %s };\n" % (offsetSym[i].name, offsetStr)
invDirs = []
for direction in stencil:
inverseDir = tuple([-i for i in direction])
invDirs.append(str(stencil.index(inverseDir)))
code += "const int %s [] = { %s };\n" % (self.INV_DIR_SYMBOL.name, ", ".join(invDirs))
offsetSymbols = BoundaryOffsetInfo._offsetSymbols(dim)
super(BoundaryOffsetInfo, self).__init__(code, symbolsRead=set(),
symbolsDefined=set(offsetSymbols + [self.INV_DIR_SYMBOL]))
@staticmethod
def _offsetSymbols(dim):
return [TypedSymbol("c_%d" % (d,), createType(np.int64)) for d in range(dim)]
INV_DIR_SYMBOL = TypedSymbol("invDir", "int")
def createBoundaryKernel(field, indexField, stencil, boundaryFunctor, target='cpu', openMP=True):
elements = [BoundaryOffsetInfo(stencil)]
indexArrDtype = indexField.dtype.numpyDtype
dirSymbol = TypedSymbol("dir", indexArrDtype.fields['dir'][0])
elements += [sp.Eq(dirSymbol, indexField[0]('dir'))]
elements += boundaryFunctor(field, directionSymbol=dirSymbol, indexField=indexField)
return createIndexedKernel(elements, [indexField], target=target, cpuOpenMP=openMP)