An error occurred while loading the file. Please try again.
-
Michael Kuron authored607aafa8
test_buffer_gpu.py 10.04 KiB
"""Tests for the (un)packing (from)to buffers on a CUDA GPU."""
import numpy as np
import pytest
from pystencils import Assignment, Field, FieldType
from pystencils.field import create_numpy_array_with_layout, layout_string_to_tuple
from pystencils.gpucuda import create_cuda_kernel, make_python_function
from pystencils.slicing import (
add_ghost_layers, get_ghost_region_slice, get_slice_before_ghost_layer)
from pystencils.stencil import direction_string_to_offset
try:
# noinspection PyUnresolvedReferences
import pycuda.autoinit
import pycuda.gpuarray as gpuarray
except ImportError:
pass
FIELD_SIZES = [(4, 3), (9, 3, 7)]
def _generate_fields(dt=np.uint8, stencil_directions=1, layout='numpy'):
pytest.importorskip('pycuda')
field_sizes = FIELD_SIZES
if stencil_directions > 1:
field_sizes = [s + (stencil_directions,) for s in field_sizes]
fields = []
for size in field_sizes:
field_layout = layout_string_to_tuple(layout, len(size))
src_arr = create_numpy_array_with_layout(size, field_layout).astype(dt)
array_data = np.reshape(np.arange(1, int(np.prod(size)+1)), size)
# Use flat iterator to input data into the array
src_arr.flat = add_ghost_layers(array_data,
index_dimensions=1 if stencil_directions > 1 else 0).astype(dt).flat
gpu_src_arr = gpuarray.to_gpu(src_arr)
gpu_dst_arr = gpuarray.zeros_like(gpu_src_arr)
gpu_buffer_arr = gpuarray.zeros(np.prod(src_arr.shape), dtype=dt)
fields.append((src_arr, gpu_src_arr, gpu_dst_arr, gpu_buffer_arr))
return fields
def test_full_scalar_field():
"""Tests fully (un)packing a scalar field (from)to a GPU buffer."""
fields = _generate_fields()
for (src_arr, gpu_src_arr, gpu_dst_arr, gpu_buffer_arr) in fields:
src_field = Field.create_from_numpy_array("src_field", src_arr)
dst_field = Field.create_from_numpy_array("dst_field", src_arr)
buffer = Field.create_generic("buffer", spatial_dimensions=1,
field_type=FieldType.BUFFER, dtype=src_arr.dtype)
pack_eqs = [Assignment(buffer.center(), src_field.center())]
pack_types = {'src_field': gpu_src_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
pack_code = create_cuda_kernel(pack_eqs, type_info=pack_types)
pack_kernel = make_python_function(pack_code)
pack_kernel(buffer=gpu_buffer_arr, src_field=gpu_src_arr)
unpack_eqs = [Assignment(dst_field.center(), buffer.center())]
unpack_types = {'dst_field': gpu_dst_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
unpack_code = create_cuda_kernel(unpack_eqs, type_info=unpack_types)
unpack_kernel = make_python_function(unpack_code)
unpack_kernel(dst_field=gpu_dst_arr, buffer=gpu_buffer_arr)
dst_arr = gpu_dst_arr.get()
np.testing.assert_equal(src_arr, dst_arr)
def test_field_slice():
"""Tests (un)packing slices of a scalar field (from)to a buffer."""
fields = _generate_fields()
for d in ['N', 'S', 'NW', 'SW', 'TNW', 'B']:
for (src_arr, gpu_src_arr, gpu_dst_arr, gpu_buffer_arr) in fields:
# Extract slice from N direction of the field
slice_dir = direction_string_to_offset(d, dim=len(src_arr.shape))
pack_slice = get_slice_before_ghost_layer(slice_dir)
unpack_slice = get_ghost_region_slice(slice_dir)
src_field = Field.create_from_numpy_array("src_field", src_arr[pack_slice])
dst_field = Field.create_from_numpy_array("dst_field", src_arr[unpack_slice])
buffer = Field.create_generic("buffer", spatial_dimensions=1,
field_type=FieldType.BUFFER, dtype=src_arr.dtype)
pack_eqs = [Assignment(buffer.center(), src_field.center())]
pack_types = {'src_field': gpu_src_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
pack_code = create_cuda_kernel(pack_eqs, type_info=pack_types)
pack_kernel = make_python_function(pack_code)
pack_kernel(buffer=gpu_buffer_arr, src_field=gpu_src_arr[pack_slice])
# Unpack into ghost layer of dst_field in N direction
unpack_eqs = [Assignment(dst_field.center(), buffer.center())]
unpack_types = {'dst_field': gpu_dst_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
unpack_code = create_cuda_kernel(unpack_eqs, type_info=unpack_types)
unpack_kernel = make_python_function(unpack_code)
unpack_kernel(buffer=gpu_buffer_arr, dst_field=gpu_dst_arr[unpack_slice])
dst_arr = gpu_dst_arr.get()
np.testing.assert_equal(src_arr[pack_slice], dst_arr[unpack_slice])
def test_all_cell_values():
"""Tests (un)packing all cell values of the a field (from)to a buffer."""
num_cell_values = 7
fields = _generate_fields(stencil_directions=num_cell_values)
for (src_arr, gpu_src_arr, gpu_dst_arr, gpu_buffer_arr) in fields:
src_field = Field.create_from_numpy_array("src_field", gpu_src_arr, index_dimensions=1)
dst_field = Field.create_from_numpy_array("dst_field", gpu_src_arr, index_dimensions=1)
buffer = Field.create_generic("buffer", spatial_dimensions=1, index_dimensions=1,
field_type=FieldType.BUFFER, dtype=gpu_src_arr.dtype)
pack_eqs = []
# Since we are packing all cell values for all cells, then
# the buffer index is equivalent to the field index
for idx in range(num_cell_values):
eq = Assignment(buffer(idx), src_field(idx))
pack_eqs.append(eq)
pack_types = {'src_field': gpu_src_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
pack_code = create_cuda_kernel(pack_eqs, type_info=pack_types)
pack_kernel = make_python_function(pack_code)
pack_kernel(buffer=gpu_buffer_arr, src_field=gpu_src_arr)
unpack_eqs = []
for idx in range(num_cell_values):
eq = Assignment(dst_field(idx), buffer(idx))
unpack_eqs.append(eq)
unpack_types = {'dst_field': gpu_dst_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
unpack_code = create_cuda_kernel(unpack_eqs, type_info=unpack_types)
unpack_kernel = make_python_function(unpack_code)
unpack_kernel(buffer=gpu_buffer_arr, dst_field=gpu_dst_arr)
dst_arr = gpu_dst_arr.get()
np.testing.assert_equal(src_arr, dst_arr)
def test_subset_cell_values():
"""Tests (un)packing a subset of cell values of the a field (from)to a buffer."""
num_cell_values = 7
# Cell indices of the field to be (un)packed (from)to the buffer
cell_indices = [1, 3, 5, 6]
fields = _generate_fields(stencil_directions=num_cell_values)
for (src_arr, gpu_src_arr, gpu_dst_arr, gpu_buffer_arr) in fields:
src_field = Field.create_from_numpy_array("src_field", gpu_src_arr, index_dimensions=1)
dst_field = Field.create_from_numpy_array("dst_field", gpu_src_arr, index_dimensions=1)
buffer = Field.create_generic("buffer", spatial_dimensions=1, index_dimensions=1,
field_type=FieldType.BUFFER, dtype=gpu_src_arr.dtype)
pack_eqs = []
# Since we are packing all cell values for all cells, then
# the buffer index is equivalent to the field index
for buffer_idx, cell_idx in enumerate(cell_indices):
eq = Assignment(buffer(buffer_idx), src_field(cell_idx))
pack_eqs.append(eq)
pack_types = {'src_field': gpu_src_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
pack_code = create_cuda_kernel(pack_eqs, type_info=pack_types)
pack_kernel = make_python_function(pack_code)
pack_kernel(buffer=gpu_buffer_arr, src_field=gpu_src_arr)
unpack_eqs = []
for buffer_idx, cell_idx in enumerate(cell_indices):
eq = Assignment(dst_field(cell_idx), buffer(buffer_idx))
unpack_eqs.append(eq)
unpack_types = {'dst_field': gpu_dst_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
unpack_code = create_cuda_kernel(unpack_eqs, type_info=unpack_types)
unpack_kernel = make_python_function(unpack_code)
unpack_kernel(buffer=gpu_buffer_arr, dst_field=gpu_dst_arr)
dst_arr = gpu_dst_arr.get()
mask_arr = np.ma.masked_where((src_arr - dst_arr) != 0, src_arr)
np.testing.assert_equal(dst_arr, mask_arr.filled(int(0)))
def test_field_layouts():
num_cell_values = 7
for layout_str in ['numpy', 'fzyx', 'zyxf', 'reverse_numpy']:
fields = _generate_fields(stencil_directions=num_cell_values, layout=layout_str)
for (src_arr, gpu_src_arr, gpu_dst_arr, gpu_buffer_arr) in fields:
src_field = Field.create_from_numpy_array("src_field", gpu_src_arr, index_dimensions=1)
dst_field = Field.create_from_numpy_array("dst_field", gpu_src_arr, index_dimensions=1)
buffer = Field.create_generic("buffer", spatial_dimensions=1, index_dimensions=1,
field_type=FieldType.BUFFER, dtype=src_arr.dtype)
pack_eqs = []
# Since we are packing all cell values for all cells, then
# the buffer index is equivalent to the field index
for idx in range(num_cell_values):
eq = Assignment(buffer(idx), src_field(idx))
pack_eqs.append(eq)
pack_types = {'src_field': gpu_src_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
pack_code = create_cuda_kernel(pack_eqs, type_info=pack_types)
pack_kernel = make_python_function(pack_code)
pack_kernel(buffer=gpu_buffer_arr, src_field=gpu_src_arr)
unpack_eqs = []
for idx in range(num_cell_values):
eq = Assignment(dst_field(idx), buffer(idx))
unpack_eqs.append(eq)
unpack_types = {'dst_field': gpu_dst_arr.dtype, 'buffer': gpu_buffer_arr.dtype}
unpack_code = create_cuda_kernel(unpack_eqs, type_info=unpack_types)
unpack_kernel = make_python_function(unpack_code)
unpack_kernel(buffer=gpu_buffer_arr, dst_field=gpu_dst_arr)