Skip to content
Snippets Groups Projects
Commit 91ea97da authored by Martin Bauer's avatar Martin Bauer
Browse files

create_kernel now correctly passes through the 'skip_independence_check'

parent 27e3929f
Branches
Tags
No related merge requests found
......@@ -9,6 +9,7 @@ from pystencils.transformations import remove_conditionals_in_staggered_kernel
def create_kernel(assignments, target='cpu', data_type="double", iteration_slice=None, ghost_layers=None,
skip_independence_check=False,
cpu_openmp=False, cpu_vectorize_info=None,
gpu_indexing='block', gpu_indexing_params=MappingProxyType({})):
"""
......@@ -24,7 +25,8 @@ def create_kernel(assignments, target='cpu', data_type="double", iteration_slice
ghost_layers: if left to default, the number of necessary ghost layers is determined automatically
a single integer specifies the ghost layer count at all borders, can also be a sequence of
pairs ``[(x_lower_gl, x_upper_gl), .... ]``
skip_independence_check: don't check that loop iterations are independent. This is needed e.g. for
periodicity kernel, that access the field outside the iteration bounds. Use with care!
cpu_openmp: True or number of threads for OpenMP parallelization, False for no OpenMP
cpu_vectorize_info: a dictionary with keys, 'vector_instruction_set', 'assume_aligned' and 'nontemporal'
for documentation of these parameters see vectorize function. Example:
......@@ -68,7 +70,8 @@ def create_kernel(assignments, target='cpu', data_type="double", iteration_slice
from pystencils.cpu import create_kernel
from pystencils.cpu import add_openmp
ast = create_kernel(assignments, type_info=data_type, split_groups=split_groups,
iteration_slice=iteration_slice, ghost_layers=ghost_layers)
iteration_slice=iteration_slice, ghost_layers=ghost_layers,
skip_independence_check=skip_independence_check)
if cpu_openmp:
add_openmp(ast, num_threads=cpu_openmp)
if cpu_vectorize_info:
......@@ -88,7 +91,8 @@ def create_kernel(assignments, target='cpu', data_type="double", iteration_slice
from pystencils.gpucuda import create_cuda_kernel
ast = create_cuda_kernel(assignments, type_info=data_type,
indexing_creator=indexing_creator_from_params(gpu_indexing, gpu_indexing_params),
iteration_slice=iteration_slice, ghost_layers=ghost_layers)
iteration_slice=iteration_slice, ghost_layers=ghost_layers,
skip_independence_check=skip_independence_check)
return ast
else:
raise ValueError("Unknown target %s. Has to be one of 'cpu', 'gpu' or 'llvm' " % (target,))
......
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment