Skip to content
Snippets Groups Projects

finite difference stencil derivation for staggered positions

Merged Michael Kuron requested to merge fvm into master
Viewing commit 2d7485a8
Next
Show latest version
2 files
+ 326
26
Preferences
Compare changes
Files
2
+ 113
0
import warnings
import warnings
from collections import defaultdict
from collections import defaultdict
 
import itertools
import numpy as np
import numpy as np
import sympy as sp
import sympy as sp
from pystencils.field import Field
from pystencils.field import Field
 
from pystencils.stencil import direction_string_to_offset
from pystencils.sympyextensions import multidimensional_sum, prod
from pystencils.sympyextensions import multidimensional_sum, prod
from pystencils.utils import LinearEquationSystem, fully_contains
from pystencils.utils import LinearEquationSystem, fully_contains
@@ -228,3 +230,114 @@ class FiniteDifferenceStencilDerivation:
@@ -228,3 +230,114 @@ class FiniteDifferenceStencilDerivation:
def __repr__(self):
def __repr__(self):
return "Finite difference stencil of accuracy {}, isotropic error: {}".format(self.accuracy,
return "Finite difference stencil of accuracy {}, isotropic error: {}".format(self.accuracy,
self.is_isotropic)
self.is_isotropic)
 
 
 
class FiniteDifferenceStaggeredStencilDerivation:
 
"""Derives a finite difference stencil for application at a staggered position
 
 
Args:
 
neighbor: the neighbor direction string or vector at whose staggered position to calculate the derivative
 
dim: how many dimensions (2 or 3)
 
derivative: a tuple of directions over which to perform derivatives
 
"""
 
 
def __init__(self, neighbor, dim, derivative=tuple()):
 
if type(neighbor) is str:
 
neighbor = direction_string_to_offset(neighbor)
 
if dim == 2:
 
assert neighbor[dim:] == 0
 
assert derivative is tuple() or max(derivative) < dim
 
neighbor = sp.Matrix(neighbor[:dim])
 
pos = neighbor / 2
 
 
def unitvec(i):
 
"""return the `i`-th unit vector in three dimensions"""
 
a = np.zeros(dim, dtype=int)
 
a[i] = 1
 
return a
 
 
def flipped(a, i):
 
"""return `a` with its `i`-th element's sign flipped"""
 
a = a.copy()
 
a[i] *= -1
 
return a
 
 
# determine the points to use, coordinates are relative to position
 
points = []
 
if np.linalg.norm(neighbor, 1) == 1:
 
main_points = [neighbor / 2, neighbor / -2]
 
elif np.linalg.norm(neighbor, 1) == 2:
 
nonzero_indices = [i for i, v in enumerate(neighbor) if v != 0 and i < dim]
 
main_points = [neighbor / 2, neighbor / -2, flipped(neighbor / 2, nonzero_indices[0]),
 
flipped(neighbor / -2, nonzero_indices[0])]
 
else:
 
main_points = [neighbor.multiply_elementwise(sp.Matrix(c) / 2)
 
for c in itertools.product([-1, 1], repeat=3)]
 
points += main_points
 
zero_indices = [i for i, v in enumerate(neighbor) if v == 0 and i < dim]
 
for i in zero_indices:
 
points += [point + sp.Matrix(unitvec(i)) for point in main_points]
 
points += [point - sp.Matrix(unitvec(i)) for point in main_points]
 
points_tuple = tuple([tuple(p) for p in points])
 
self._stencil = points_tuple
 
 
# determine the stencil weights
 
if len(derivative) == 0:
 
weights = None
 
else:
 
derivation = FiniteDifferenceStencilDerivation(derivative, points_tuple).get_stencil()
 
if not derivation.accuracy:
 
raise Exception('the requested derivative cannot be performed with the available neighbors')
 
weights = derivation.weights
 
 
# if the weights are underdefined, we can choose the free symbols to find the sparsest stencil
 
free_weights = set(itertools.chain(*[w.free_symbols for w in weights]))
 
if len(free_weights) > 0:
 
zero_counts = defaultdict(list)
 
for values in itertools.product([-1, -sp.Rational(1, 2), 0, 1, sp.Rational(1, 2)],
 
repeat=len(free_weights)):
 
subs = {free_weight: value for free_weight, value in zip(free_weights, values)}
 
weights = [w.subs(subs) for w in derivation.weights]
 
if not all(a == 0 for a in weights):
 
zero_count = sum([1 for w in weights if w == 0])
 
zero_counts[zero_count].append(weights)
 
best = zero_counts[max(zero_counts.keys())]
 
if len(best) > 1: # if there are multiple, pick the one that contains a nonzero center weight
 
center = [tuple(p + pos) for p in points].index((0, 0, 0))
 
best = [b for b in best if b[center] != 0]
 
if len(best) > 1:
 
raise NotImplementedError("more than one suitable set of weights found, don't know how to proceed")
 
weights = best[0]
 
assert weights
 
 
points_tuple = tuple([tuple(p + pos) for p in points])
 
self._points = points_tuple
 
self._weights = weights
 
 
@property
 
def points(self):
 
"""return the points of the stencil"""
 
return self._points
 
 
@property
 
def stencil(self):
 
"""return the points of the stencil relative to the staggered position specified by neighbor"""
 
return self._stencil
 
 
@property
 
def weights(self):
 
"""return the weights of the stencil"""
 
assert self._weights is not None
 
return self._weights
 
 
def visualize(self):
 
if self._weights is None:
 
ws = None
 
else:
 
ws = np.array([w for w in self.weights if w != 0], dtype=float)
 
pts = np.array([p for i, p in enumerate(self.points) if self.weights[i] != 0], dtype=int)
 
from pystencils.stencil import plot
 
plot(pts, data=ws)
 
 
def apply(self, field):
 
return sum([field.__getitem__(point) * weight for point, weight in zip(self.points, self.weights)])